Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Haematol ; 113(1): 44-53, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38544388

ABSTRACT

INTRODUCTION: Recent studies scrutinize how NETosis (a unique cell death mechanism of neutrophil), impacts thrombosis patients with essential thrombocythemia (ET). This research evaluates the susceptibility of ET neutrophils to form NETs and tests two potential inhibitors, resveratrol (RSV) and tetrahydroisoquinoline (THIQ), in vitro. METHODS: Platelet-rich plasma from low-risk ET patients was used, along with neutrophils from both patients and controls. NET formation assays, with or without RSV and THIQ treatment after LPS stimulation, were conducted in a CO2 incubator. Evaluation included flow cytometry and fluorescence microscopy for NET formation and ELISA for TNFα, IL8, and vWF:Ag levels in patient and control plasma. RESULTS: Neutrophils from ET patients released more NETs than controls, confirmed by flow cytometry and fluorescence microscopy. Additionally, patients had significantly higher plasma levels of IL8 and TNFα compared to controls, while RSV was more effective than THIQ in reducing NETosis rates in these patients. CONCLUSIONS: In ET patients, a platelet counts over 1 million indicates the need for preventive treatment against thrombotic events. Similarly, in this study, RSV and THIQ significantly reduced the rate of NETosis in ET patients with higher platelet counts, and this role was more prominent in the case of the second inhibitor (RSV).


Subject(s)
Extracellular Traps , Neutrophils , Resveratrol , Tetrahydroisoquinolines , Thrombocythemia, Essential , Humans , Resveratrol/pharmacology , Resveratrol/therapeutic use , Neutrophils/metabolism , Neutrophils/drug effects , Neutrophils/immunology , Thrombocythemia, Essential/drug therapy , Thrombocythemia, Essential/blood , Thrombocythemia, Essential/metabolism , Female , Male , Middle Aged , Extracellular Traps/metabolism , Extracellular Traps/drug effects , Tetrahydroisoquinolines/pharmacology , Tetrahydroisoquinolines/therapeutic use , Adult , Aged , Case-Control Studies , Cytokines/metabolism , Disease Susceptibility
2.
J Pineal Res ; 75(3): e12901, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37485730

ABSTRACT

Melatonin is a powerful biological agent that has been shown to inhibit angiogenesis and also exerts anti-inflammatory effects. It is well known that new blood vessel formation (angiogenesis) has become an urgent issue in leukemia as well as solid tumors. Acute promyelocytic leukemia (APL) is a form of liquid cancer that manifests increased angiogenesis in the bone marrow of patients. Despite high-rate curable treatment with all-trans-retinoic acid (ATRA) and recently arsenic-trioxide (ATO), early death because of hemorrhage, coagulopathy, and Disseminated intravascular coagulation (DIC) remains still a concerning issue in these patients. It is, therefore, urgent to seek treatment strategies with antiangiogenic capabilities that also diminish coagulopathy and hyperfibrinolysis in APL patients. In this study, a coculture system with human umbilical vein endothelial cells (HUVECs) and NB4 APL cells was used to investigate the direct effect of melatonin on angiogenesis and its possible action on tissue factor (TF) and tissue-type plasminogen activator-1 (TPA-1) expression. Our experiments revealed that HUVEC-induced angiogenesis by cocultured NB4 cells was suppressed when melatonin alone or in combination with ATRA was added to the incubation medium. Melatonin at concentrations of 1 mM inhibited tube formation of HUVECs and also decreased interleukin-6 secretion and VEGF mRNA expression in HUVEC and NB4 cells. Taken together, the results of this study demonstrate that melatonin inhibits accelerated angiogenesis of HUVECs and ameliorates the coagulation and fibrinolysis indices stimulated by coculturing with NB4 cells.


Subject(s)
Leukemia, Promyelocytic, Acute , Melatonin , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology , Melatonin/pharmacology , Endothelial Cells , Tretinoin/pharmacology , Arsenic Trioxide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...