Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(7): e0159933, 2016.
Article in English | MEDLINE | ID: mdl-27467171

ABSTRACT

Understanding the mechanisms by which climate variation can drive population changes requires information linking climate, local conditions, trophic resources, behaviour and demography. Climate change alters the seasonal pattern of emergence and abundance of invertebrate populations, which may have important consequences for the breeding performance and population change of insectivorous birds. In this study, we examine the role of food availability in driving behavioural changes in an insectivorous migratory songbird; the Eurasian reed warbler Acrocephalus scirpaceus. We use a feeding experiment to examine the effect of increased food supply on different components of breeding behaviour and first-brood productivity, over three breeding seasons (2012-2014). Reed warblers respond to food-supplementation by advancing their laying date by up to 5.6 days. Incubation periods are shorter in supplemented groups during the warmest mean spring temperatures. Nestling growth rates are increased in nests provisioned by supplemented parents. In addition, nest predation is reduced, possibly because supplemented adults spend more time at the nest and faster nestling growth reduces the period of vulnerability of eggs and nestlings to predators (and brood parasites). The net effect of these changes is to advance the fledging completion date and to increase the overall productivity of the first brood for supplemented birds. European populations of reed warblers are currently increasing; our results suggest that advancing spring phenology, leading to increased food availability early in the breeding season, could account for this change by facilitating higher productivity. Furthermore, the earlier brood completion potentially allows multiple breeding attempts. This study identifies the likely trophic and behavioural mechanisms by which climate-driven changes in invertebrate phenology and abundance may lead to changes in breeding phenology, nest survival and net reproductive performance of insectivorous birds.


Subject(s)
Animal Feed , Climate Change , Songbirds/physiology , Animals , Clutch Size , Female , Male , Nesting Behavior , Reproduction , Wales , Wetlands
2.
PLoS One ; 9(11): e113665, 2014.
Article in English | MEDLINE | ID: mdl-25426716

ABSTRACT

Migratory birds face significant challenges across their annual cycle, including occupying an appropriate non-breeding home range with sufficient foraging resources. This can affect demographic processes such as over-winter survival, migration mortality and subsequent breeding success. In the Sahel region of Africa, where millions of migratory songbirds attempt to survive the winter, some species of insectivorous warblers occupy both wetland and dry-scrubland habitats, whereas other species are wetland or dry-scrubland specialists. In this study we examine evidence for strategic regulation of body reserves and competition-driven habitat selection, by comparing invertebrate prey activity-density, warbler body size and extent of fat and pectoral muscle deposits, in each habitat type during the non-breeding season. Invertebrate activity-density was substantially higher in wetland habitats than in dry-scrubland. Eurasian reed warblers Acrocephalus scirpaceus occupying wetland habitats maintained lower body reserves than conspecifics occupying dry-scrub habitats, consistent with buffering of reserves against starvation in food-poor habitat. A similar, but smaller, difference in body reserves between wet and dry habitat was found among subalpine warblers Sylvia cantillans but not in chiffchaffs Phylloscopus collybita inhabiting dry-scrub and scrub fringing wetlands. Body reserves were relatively low among habitat specialist species; resident African reed warbler A. baeticatus and migratory sedge warbler A. schoenobaenus exclusively occupying wetland habitats, and Western olivaceous warblers Iduna opaca exclusively occupying dry habitats. These results suggest that specialists in preferred habitats and generalists occupying prey-rich habitats can reduce body reserves, whereas generalists occupying prey-poor habitats carry an increased level of body reserves as a strategic buffer against starvation.


Subject(s)
Ecosystem , Songbirds/physiology , Adipose Tissue/metabolism , Animal Migration , Animals , Body Size , Breeding , Seasons , Starvation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...