Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36499985

ABSTRACT

Owing to the unique active corrosion protection characteristic of hexavalent chromium-based systems, they have been projected to be highly effective solutions against the corrosion of many engineering metals. However, hexavalent chromium, rendered a highly toxic and carcinogenic substance, is being phased out of industrial applications. Thus, over the past few years, extensive and concerted efforts have been made to develop environmentally friendly alternative technologies with comparable or better corrosion protection performance to that of hexavalent chromium-based technologies. The introduction of corrosion inhibitors to a coating system on magnesium surface is a cost-effective approach not only for improving the overall corrosion protection performance, but also for imparting active inhibition during the service life of the magnesium part. Therefore, in an attempt to resemble the unique active corrosion protection characteristic of the hexavalent chromium-based systems, the incorporation of inhibitors to barrier coatings on magnesium alloys has been extensively investigated. In Part III of the Review, several types of corrosion inhibitors for magnesium and its alloys are reviewed. A discussion of the state-of-the-art inhibitor systems, such as iron-binding inhibitors and inhibitor mixtures, is presented, and perspective directions of research are outlined, including in silico or computational screening of corrosion inhibitors. Finally, the combination of corrosion inhibitors with other corrosion protection strategies is reviewed. Several reported highly protective coatings with active inhibition capabilities stemming from the on-demand activation of incorporated inhibitors can be considered a promising replacement for hexavalent chromium-based technologies, as long as their deployment is adequately addressed.

2.
Materials (Basel) ; 15(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36500010

ABSTRACT

Although hexavalent chromium-based protection systems are effective and their long-term performance is well understood, they can no longer be used due to their proven Cr(VI) toxicity and carcinogenic effect. The search for alternative protection technologies for Mg alloys has been going on for at least a couple of decades. However, surface treatment systems with equivalent efficacies to that of Cr(VI)-based ones have only begun to emerge much more recently. It is still proving challenging to find sufficiently protective replacements for Cr(VI) that do not give rise to safety concerns related to corrosion, especially in terms of fulfilling the requirements of the transportation industry. Additionally, in overcoming these obstacles, the advantages of newly introduced technologies have to include not only health safety but also need to be balanced against their added cost, as well as being environmentally friendly and simple to implement and maintain. Anodizing, especially when carried out above the breakdown potential (technology known as Plasma Electrolytic Oxidation (PEO)) is an electrochemical oxidation process which has been recognized as one of the most effective methods to significantly improve the corrosion resistance of Mg and its alloys by forming a protective ceramic-like layer on their surface that isolates the base material from aggressive environmental agents. Part II of this review summarizes developments in and future outlooks for Mg anodizing, including traditional chromium-based processes and newly developed chromium-free alternatives, such as PEO technology and the use of organic electrolytes. This work provides an overview of processing parameters such as electrolyte composition and additives, voltage/current regimes, and post-treatment sealing strategies that influence the corrosion performance of the coatings. This large variability of the fabrication conditions makes it possible to obtain Cr-free products that meet the industrial requirements for performance, as expected from traditional Cr-based technologies.

3.
Materials (Basel) ; 15(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36500170

ABSTRACT

Corrosion protection systems based on hexavalent chromium are traditionally perceived to be a panacea for many engineering metals including magnesium alloys. However, bans and strict application regulations attributed to environmental concerns and the carcinogenic nature of hexavalent chromium have driven a considerable amount of effort into developing safer and more environmentally friendly alternative techniques that provide the desired corrosion protection performance for magnesium and its alloys. Part I of this review series considers the various pre-treatment methods as the earliest step involved in the preparation of Mg surfaces for the purpose of further anti-corrosion treatments. The decisive effect of pre-treatment on the corrosion properties of both bare and coated magnesium is discussed. The second section of this review covers the fundamentals and performance of conventional and state-of-the-art conversion coating formulations including phosphate-based, rare-earth-based, vanadate, fluoride-based, and LDH. In addition, the advantages and challenges of each conversion coating formulation are discussed to accommodate the perspectives on their application and future development. Several auspicious corrosion protection performances have been reported as the outcome of extensive ongoing research dedicated to the development of conversion coatings, which can potentially replace hazardous chromium(VI)-based technologies in industries.

4.
J Phys Chem Lett ; 11(20): 8790-8798, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32985887

ABSTRACT

Magnesium primary cells are currently experiencing a renaissance following the suggestion of new strategies to boost their performance. The strategies suggested will maintain utilization efficiencies of 30-70%, which is considered to be relatively modest. In this work, the highest ever reported level of utilization efficiency of 82% is achieved for a Mg-based primary cell using a synergistic combination of electrolyte additives. It is demonstrated that the joint use of sodium nitrate and salicylate as electrolyte additives allows us to reach the aforementioned utilization efficiency of 5 mA/cm2 via offering an effective suppression of anode self-corrosion and uniform Mg dissolution under discharge conditions.

5.
Sci Rep ; 8(1): 7578, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29765088

ABSTRACT

Aqueous Mg battery technology holds significant appeal, owing to the availability of raw materials, high power densities and the possibility of fast mechanical recharge. However, Mg batteries have so far been prone to decreased capacity due to self-corrosion of the anodes from the electrochemical redeposition of impurities, such as Fe, which results in parasitic cathodically active sites on the discharging anode. This work demonstrates that by adding Fe3+-complexing agents like Tiron or salicylate to the aqueous electrolyte of an Mg battery, it was possible to prevent the redeposition of Fe impurities and subsequent self-corrosion of the anode surface, thereby boosting battery performance. To prevent detrimental fouling of anode surface by Mg(OH)2, employed Fe3+-complexing agents must also form soluble complexes with Mg2+ of moderate stability. The interplay of these requirements predetermines the improvement of operating voltage and utilization efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...