Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 856(Pt 1): 158927, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36152844

ABSTRACT

Failures of mine tailings storage facilities (TSF) can have profound and long-lasting effects on the downstream receiving environment. Virtually all spills to date have been into river systems without large lakes that may buffer downstream impacts. In August 2014, the failure of the Mount Polley copper (Cu)-gold mine TSF in British Columbia, Canada, released ~25 × 106 m3 of water and solids; globally, this is the second largest TSF spill in history. Over 18 × 106 m3 was delivered to Quesnel Lake, which is ~9 km from the TSF and is the third deepest lake in North America, and a crucial habitat for Pacific salmon and trout populations. We determined the sediment-associated Cu concentrations and fluxes in Quesnel River, downstream of the lake, from August 2014 to February 2021 based on the analysis of >400 samples of sediment, mainly collected using a continuous-flow centrifuge. During each winter since the spill, Cu concentrations in the fluvial sediment in the upper reaches of the river (~35 km from the TSF) were elevated relative to regional background concentrations and samples collected before the spill. Maximum Cu concentrations were ~410 mg kg-1 which exceeds Canadian sediment quality guidelines for the protection of aquatic organisms (197 mg kg-1). Monitoring of Quesnel Lake since the spill shows that these annual pulses in the winter are due to resuspension of unconsolidated tailings and sediments at the bottom of Quesnel Lake, during autumnal lake turnover, which become mixed throughout the water column and subsequently flow into Quesnel River. Results show that while large lakes may buffer downstream aquatic systems from contaminated sediment, they may prolong the environmental impact. These findings are crucial in understanding how lake processes may modify the effects of TSF spills on downstream aquatic systems.


Subject(s)
Lakes , Water Pollutants, Chemical , British Columbia , Copper/analysis , Environmental Monitoring , Geologic Sediments/analysis , Water/analysis , Water Pollutants, Chemical/analysis
2.
Mar Pollut Bull ; 170: 112647, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34175695

ABSTRACT

Passive acoustic recorders were deployed over two years (February 2018-March 2020) in the Salish Sea to monitor the underwater soundscape. Seasonal cycles and differences between the open Strait of Juan de Fuca and protected inner waterways were pervasive during this period. A comparison between natural and human-derived noise demonstrated the impact of anthropogenic activities on the sound field. Elevated ambient noise levels during winter resulted predominantly from greater sea states and storm events. Abiotic additions were defined through correlations to wind speed, wave and precipitation measures. Vessel noise was a pervasive anthropogenic addition; commercial vessel noise was consistently present, whereas smaller vessels showed weekly and diurnal patterns, especially during the summer when their presence increased. A better understanding of the different soundscape constituents, and when each dominates, is crucial to understanding the human impact on underwater ecosystems and the organisms within them, leading to more effective mitigation measures.


Subject(s)
Ecosystem , Sound , Acoustics , British Columbia , Humans , Noise
SELECTION OF CITATIONS
SEARCH DETAIL
...