Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Histopathology ; 66(5): 747-51, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25601620

ABSTRACT

AIMS: Telomerase is reactivated in most cancers and there is accumulating evidence that this is a driver event in malignant melanoma (MM). Thus, our aim was to evaluate if in-situ hybridization (ISH)-based quantification of telomerase RNA (hTR) could be used to distinguish MM from naevi, and if there was a correlation with the Breslow thickness. RESULTS AND METHODS: We created a tissue microarray (TMA) from formalin-fixed and paraffin-embedded tissue samples from 17 MM and 23 naevi, performed ISH targeting hTR, and quantified the signals. We found a more than eightfold greater number of hTR signals per nucleus in the MM samples compared to the naevi, and a positive correlation (P = 0.0381) between the number of hTR signals per nucleus and the Breslow thickness. CONCLUSION: Quantification of hTR ISH signals clearly distinguish MM from naevi (P < 0.0001) and the number of signals per nucleus correlates with the Breslow thickness, suggesting that hTR might be a valuable biomarker in MM. Furthermore, as ISH-based detection requires the presence of both hTR and telomerase reverse transcriptase (hTERT), it might be an indicator of active telomerase and thus have future relevance as a predictive biomarker for anti-telomerase treatment.


Subject(s)
Biomarkers, Tumor/metabolism , Melanoma/enzymology , Nevus/enzymology , RNA/metabolism , Skin Neoplasms/enzymology , Telomerase/metabolism , Humans , Immunohistochemistry , In Situ Hybridization/methods , Melanoma/diagnosis , Nevus/diagnosis , Skin Neoplasms/diagnosis
2.
Biosens Bioelectron ; 48: 230-7, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23693093

ABSTRACT

Real-time detection of enzyme activities may present the easiest and most reliable way of obtaining quantitative analyses in biological samples. We present a new DNA-biosensor capable of detecting the activity of the potential anticancer drug target tyrosyl-DNA phosphodiesterase 1 (TDP1) in a very simple, high throughput, and real-time format. The biosensor is specific for Tdp1 even in complex biological samples, such as human cell extracts, and may consequently find future use in fundamental studies as well as a cancer predictive tool allowing fast analyses of diagnostic cell samples such as biopsies. TDP1 removes covalent 3'DNA adducts in DNA single-strand break repair. This enzymatic activity forms the basis of the design of the TDP1-biosensor, which consists of a short hairpin-forming oligonucleotide having a 5'fluorophore and a 3'quencher brought in close proximity by the secondary structure of the biosensor. The specific action of TDP1 removes the quencher, thereby enabling optical detection of the fluorophore. Since the enzymatic action of TDP1 is the only "signal amplification" the increase in fluorescence may easily be followed in real-time and allows quantitative analyses of TDP1 activity in pure enzyme fractions as well as in crude cell extracts. In the present study we demonstrate the specificity of the biosensor, its ability to quantitatively detect up- or down-regulated TDP1 activity, and that it may be used for measuring and for analyzing the mechanism of TDP1 inhibition.


Subject(s)
Biosensing Techniques/methods , DNA/metabolism , Phosphoric Diester Hydrolases/metabolism , Cell Line , Cells, Cultured , Cloning, Molecular , DNA/chemistry , Enzyme Assays/methods , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Humans , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/isolation & purification , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...