Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nat Struct Mol Biol ; 31(6): 903-909, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38553642

ABSTRACT

Adult individuals with Down syndrome (DS) develop Alzheimer disease (AD). Whether there is a difference between AD in DS and AD regarding the structure of amyloid-ß (Aß) and tau filaments is unknown. Here we report the structure of Aß and tau filaments from two DS brains. We found two Aß40 filaments (types IIIa and IIIb) that differ from those previously reported in sporadic AD and two types of Aß42 filaments (I and II) identical to those found in sporadic and familial AD. Tau filaments (paired helical filaments and straight filaments) were identical to those in AD, supporting the notion of a common mechanism through which amyloids trigger aggregation of tau. This knowledge is important for understanding AD in DS and assessing whether adults with DS could be included in AD clinical trials.


Subject(s)
Amyloid beta-Peptides , Cryoelectron Microscopy , Down Syndrome , tau Proteins , Down Syndrome/metabolism , Down Syndrome/pathology , Humans , tau Proteins/metabolism , tau Proteins/chemistry , tau Proteins/ultrastructure , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Brain/metabolism , Brain/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Peptide Fragments/metabolism , Peptide Fragments/chemistry , Adult , Models, Molecular
2.
ACS Nano ; 18(8): 6673-6689, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38353701

ABSTRACT

The current live rotavirus (RV) vaccines show reduced effectiveness in developing countries, calling for vaccine strategies with improved efficacy and safety. We generated pseudovirus nanoparticles (PVNPs) that display multiple ectodomains of RV viral protein 4 (VP4), named S-VP4e, as a nonreplicating RV vaccine candidate. The RV spike protein VP4s that bind host receptors and facilitate viral entry are excellent targets for vaccination. In this study, we developed scalable methods to produce three S-VP4e PVNPs, each displaying the VP4e antigens from one of the three predominant P[8], P[4], and P[6] human RVs (HRVs). These PVNPs were recognized by selected neutralizing VP4-specific monoclonal antibodies, bound glycan receptors, attached to permissive HT-29 cells, and underwent cleavage by trypsin between VP8* and VP5*. 3D PVNP models were constructed to understand their structural features. A trivalent PVNP vaccine containing the three S-VP4e PVNPs elicited high and well-balanced VP4e-specific antibody titers in mice directed against the three predominant HRV P types. The resulting antisera neutralized the three HRV prototypes at high titers; greater than 4-fold higher than the neutralizing responses induced by a trivalent vaccine consisting of the S60-VP8* PVNPs. Finally, the trivalent S-VP4e PVNP vaccine provided 90-100% protection against diarrhea caused by HRV challenge. Our data supports the trivalent S-VP4e PVNPs as a promising nonreplicating HRV vaccine candidate for parenteral delivery to circumvent the suboptimal immunization issues of all present live HRV vaccines. The established PVNP-permissive cell and PVNP-glycan binding assays will be instrumental for further investigating HRV-host cell interactions and neutralizing effects of VP4-specific antibodies and antivirals.


Subject(s)
Rotavirus , Viral Vaccines , Animals , Mice , Humans , Nanovaccines , Viral Proteins/metabolism , Antibodies, Neutralizing , Polysaccharides , Immunity , Antibodies, Viral
3.
Biomolecules ; 14(1)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38254719

ABSTRACT

Human noroviruses (HuNoVs) are a major cause of acute gastroenteritis, contributing significantly to annual foodborne illness cases. However, studying these viruses has been challenging due to limitations in tissue culture techniques for over four decades. Tulane virus (TV) has emerged as a crucial surrogate for HuNoVs due to its close resemblance in amino acid composition and the availability of a robust cell culture system. Initially isolated from rhesus macaques in 2008, TV represents a novel Calicivirus belonging to the Recovirus genus. Its significance lies in sharing the same host cell receptor, histo-blood group antigen (HBGA), as HuNoVs. In this study, we introduce, through cryo-electron microscopy (cryo-EM), the structure of a specific TV variant (the 9-6-17 TV) that has notably lost its ability to bind to its receptor, B-type HBGA-a finding confirmed using an enzyme-linked immunosorbent assay (ELISA). These results offer a profound insight into the genetic modifications occurring in TV that are necessary for adaptation to cell culture environments. This research significantly contributes to advancing our understanding of the genetic changes that are pivotal to successful adaptation, shedding light on fundamental aspects of Calicivirus evolution.


Subject(s)
Amino Acids , Viruses , Humans , Animals , Cryoelectron Microscopy , Macaca mulatta , Mutation
4.
Vaccines (Basel) ; 11(11)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-38005982

ABSTRACT

BACKGROUND: malaria caused by Plasmodium parasites remains a public health threat. The circumsporozoite proteins (CSPs) of Plasmodium sporozoite play a key role in Plasmodium infection, serving as an excellent vaccine target. METHODS: using a self-assembled S60 nanoparticle platform, we generated pseudovirus nanoparticles (PVNPs) displaying CSPs, named S-CSPs, for enhanced immunogenicity. RESULTS: purified Hisx6-tagged or tag-free S-CSPs self-assembled into PVNPs that consist of a norovirus S60 inner shell and multiple surface-displayed CSPs. The majority of the PVNPs measured ~27 nm with some size variations, and their three-dimensional structure was modeled. The PVNP-displayed CSPs retained their glycan receptor-binding function. A mouse immunization study showed that PVNPs induced a high antibody response against CSP antigens and the PVNP-immunized mouse sera stained the CSPs of Plasmodium sporozoites at high titer. CONCLUSIONS AND DISCUSSION: the PVNP-displayed CSPs retain their authentic antigenic feature and receptor-binding function. The CSP-specific antibody elicited by the S-CSP PVNPs binds original CSPs and potentially inhibits the attachment of Plasmodium sporozoites to their host cells, a key step for liver invasion by the sporozoites. Thus, S-CSP PVNPs may be an excellent vaccine candidate against malaria caused by Plasmodium parasites.

5.
Biotechnol J ; 18(10): e2300130, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37300425

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused considerable morbidity and mortality worldwide. Although authorized COVID-19 vaccines have been shown highly effective, their significantly lower efficacy against heterologous variants, and the rapid decrease of vaccine-elicited immunity raises serious concerns, calling for improved vaccine tactics. To this end, a pseudovirus nanoparticle (PVNP) displaying the receptor binding domains (RBDs) of SARS-CoV-2 spike, named S-RBD, was generated and shown it as a promising COVID-19 vaccine candidate. The S-RBD PVNP was produced using both prokaryotic and eukaryotic systems. A 3D structural model of the S-RBD PVNPs was built based on the known structures of the S60 particle and RBDs, revealing an S60 particle-based icosahedral symmetry with multiple surface-displayed RBDs that retain authentic conformations and receptor-binding functions. The PVNP is highly immunogenic, eliciting high titers of RBD-specific IgG and neutralizing antibodies in mice. The S-RBD PVNP demonstrated exceptional protective efficacy, and fully (100%) protected K18-hACE2 mice from mortality and weight loss after a lethal SARS-CoV-2 challenge, supporting the S-RBD PVNPs as a potent COVID-19 vaccine candidate. By contrast, a PVNP displaying the N-terminal domain (NTD) of SARS-CoV-2 spike exhibited only 50% protective efficacy. Since the RBD antigens of our PVNP vaccine are adjustable as needed to address the emergence of future variants, and various S-RBD PVNPs can be combined as a cocktail vaccine for broad efficacy, these non-replicating PVNPs offer a flexible platform for a safe, effective COVID-19 vaccine with minimal manufacturing cost and time.


Subject(s)
COVID-19 , Nanoparticles , Animals , Humans , Mice , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Pandemics , Weight Loss
6.
Int J Nanomedicine ; 18: 3087-3107, 2023.
Article in English | MEDLINE | ID: mdl-37312932

ABSTRACT

Introduction: Malaria is a devastating infectious illness caused by protozoan Plasmodium parasites. The circumsporozoite protein (CSP) on Plasmodium sporozoites binds heparan sulfate proteoglycan (HSPG) receptors for liver invasion, a critical step for prophylactic and therapeutic interventions. Methods: In this study, we characterized the αTSR domain that covers region III and the thrombospondin type-I repeat (TSR) of the CSP using various biochemical, glycobiological, bioengineering, and immunological approaches. Results: We found for the first time that the αTSR bound heparan sulfate (HS) glycans through support by a fused protein, indicating that the αTSR is a key functional domain and thus a vaccine target. When the αTSR was fused to the S domain of norovirus VP1, the fusion protein self-assembled into uniform S60-αTSR nanoparticles. Three-dimensional structure reconstruction revealed that each nanoparticle consists of an S60 nanoparticle core and 60 surface displayed αTSR antigens. The nanoparticle displayed αTSRs retained the binding function to HS glycans, indicating that they maintained authentic conformations. Both tagged and tag-free S60-αTSR nanoparticles were produced via the Escherichia coli system at high yield by scalable approaches. They are highly immunogenic in mice, eliciting high titers of αTSR-specific antibody that bound specifically to the CSPs of Plasmodium falciparum sporozoites at high titer. Discussion and Conclusion: Our data demonstrated that the αTSR is an important functional domain of the CSP. The S60-αTSR nanoparticle displaying multiple αTSR antigens is a promising vaccine candidate potentially against attachment and infection of Plasmodium parasites.


Subject(s)
Nanoparticles , Sporozoites , Animals , Mice , Heparitin Sulfate , Antibodies , Protozoan Proteins/genetics , Escherichia coli/genetics , Sulfates
8.
bioRxiv ; 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36711790

ABSTRACT

Background: The Microtubule-Associated Protein Tau (MAPT) is one of the proteins that are central to neurodegenerative diseases. The nature of intracellular tau aggregates is determined by the cell types whether neuronal or glial, the participating tau isoforms, and the structure of the amyloid filament. The transmembrane protein 106B (TMEM106B) has recently emerged as another significant player in neurodegeneration and aging. In the central nervous system, the composition of the gray and white matter differs considerably. The gray matter consists of nerve cell bodies, dendrites, unmyelinated axons, synaptic terminals, astrocytes, oligodendrocytes (satellite cells) and microglia. The white matter differs from the gray for the presence of axonal tracts as the only neuronal component and for the absence of nerve cell bodies, dendrites and synaptic terminals. Cryogenic electron microscopy (cryo-EM) studies have unveiled the structure of tau and TMEM106B, from the cerebral cortex, in several neurodegenerative diseases; however, whether tau and TMEM106B filaments from the gray and white matter share a common fold requires additional investigation. Methods: We isolated tau and TMEM106B from the cerebral cortex and white matter of the frontal lobes of two individuals affected by multiple system tauopathy with presenile dementia (MSTD), a disease caused by the MAPT intron 10 mutation +3. We used immunostaining, biochemical, genetics and cryo-EM methods to characterize tau and TMEM106B. Results: We determined that tau filaments in the gray and the white matter of MSTD individuals can induce tau aggregation and have identical AGD type 2 folds. TMEM106B amyloid filaments were also found in the gray and white matter of MSTD; the filament folds were identical in the two anatomical regions. Conclusions: Our findings show for the first time that in MSTD two types of amyloid filaments extracted from the gray matter have identical folds to those extracted from the white matter. Whether in this genetic disorder there is a relationship in the pathogenesis of the tau and TMEM106B filaments, remains to be determined. Furthermore, additional studies are needed for other proteins and other neurodegenerative diseases to establish whether filaments extracted from the gray and white matter would have identical folds.

9.
Acta Neuropathol ; 144(3): 509-520, 2022 09.
Article in English | MEDLINE | ID: mdl-35819518

ABSTRACT

Prion protein (PrP) aggregation and formation of PrP amyloid (APrP) are central events in the pathogenesis of prion diseases. In the dominantly inherited prion protein amyloidosis known as Gerstmann-Sträussler-Scheinker (GSS) disease, plaques made of PrP amyloid are present throughout the brain. The c.593t > c mutation in the prion protein gene (PRNP) results in a phenylalanine to serine amino acid substitution at PrP residue 198 (F198S) and causes the most severe amyloidosis among GSS variants. It has been shown that neurodegeneration in this disease is associated with the presence of extracellular APrP plaques and neuronal intracytoplasmic Tau inclusions, that have been shown to contain paired helical filaments identical to those found in Alzheimer disease. Using cryogenic electron microscopy (cryo-EM), we determined for the first time the structures of filaments of human APrP, isolated post-mortem from the brain of two symptomatic PRNP F198S mutation carriers. We report that in GSS (F198S) APrP filaments are composed of dimeric, trimeric and tetrameric left-handed protofilaments with their protomers sharing a common protein fold. The protomers in the cross-ß spines consist of 62 amino acids and span from glycine 80 to phenylalanine 141, adopting a previously unseen spiral fold with a thicker outer layer and a thinner inner layer. Each protomer comprises nine short ß-strands, with the ß1 and ß8 strands, as well as the ß4 and ß9 strands, forming a steric zipper. The data obtained by cryo-EM provide insights into the structural complexity of the PrP filament in a dominantly inherited human PrP amyloidosis. The novel findings highlight the urgency of extending our knowledge of the filaments' structures that may underlie distinct clinical and pathologic phenotypes of human neurodegenerative diseases.


Subject(s)
Amyloidosis , Gerstmann-Straussler-Scheinker Disease , Prions , Amyloid/metabolism , Amyloidosis/metabolism , Brain/pathology , Cryoelectron Microscopy , Gerstmann-Straussler-Scheinker Disease/metabolism , Humans , Phenylalanine/metabolism , Plaque, Amyloid/pathology , Prion Proteins/genetics , Prion Proteins/metabolism , Prions/genetics , Prions/metabolism , Protein Subunits/metabolism
10.
Acta Neuropathol ; 142(2): 227-241, 2021 08.
Article in English | MEDLINE | ID: mdl-34128081

ABSTRACT

In human neurodegenerative diseases associated with the intracellular aggregation of Tau protein, the ordered cores of Tau filaments adopt distinct folds. Here, we analyze Tau filaments isolated from the brain of individuals affected by Prion-Protein cerebral amyloid angiopathy (PrP-CAA) with a nonsense mutation in the PRNP gene that leads to early termination of translation of PrP (Q160Ter or Q160X), and Gerstmann-Sträussler-Scheinker (GSS) disease, with a missense mutation in the PRNP gene that leads to an amino acid substitution at residue 198 (F198S) of PrP. The clinical and neuropathologic phenotypes associated with these two mutations in PRNP are different; however, the neuropathologic analyses of these two genetic variants have consistently shown the presence of numerous neurofibrillary tangles (NFTs) made of filamentous Tau aggregates in neurons. We report that Tau filaments in PrP-CAA (Q160X) and GSS (F198S) are composed of 3-repeat and 4-repeat Tau isoforms, having a striking similarity to NFTs in Alzheimer disease (AD). In PrP-CAA (Q160X), Tau filaments are made of both paired helical filaments (PHFs) and straight filaments (SFs), while in GSS (F198S), only PHFs were found. Mass spectrometry analyses of Tau filaments extracted from PrP-CAA (Q160X) and GSS (F198S) brains show the presence of post-translational modifications that are comparable to those seen in Tau aggregates from AD. Cryo-EM analysis reveals that the atomic models of the Tau filaments obtained from PrP-CAA (Q160X) and GSS (F198S) are identical to those of the Tau filaments from AD, and are therefore distinct from those of Pick disease, chronic traumatic encephalopathy, and corticobasal degeneration. Our data support the hypothesis that in the presence of extracellular amyloid deposits and regardless of the primary amino acid sequence of the amyloid protein, similar molecular mechanisms are at play in the formation of identical Tau filaments.


Subject(s)
Alzheimer Disease/metabolism , Amyloidosis/metabolism , Neurofibrillary Tangles/pathology , Plaque, Amyloid/pathology , tau Proteins/metabolism , Alzheimer Disease/pathology , Amyloidosis/complications , Brain/pathology , Corticobasal Degeneration/metabolism , Gerstmann-Straussler-Scheinker Disease/metabolism , Humans , Phenotype , Plaque, Amyloid/metabolism , Prion Proteins/metabolism , Prions/metabolism
11.
ACS Nano ; 15(5): 8376-8385, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33900731

ABSTRACT

Recent progress in the development of affinity grids for cryoelectron microscopy (cryo-EM) typically employs genetic engineering of the protein sample such as histidine or Spy tagging, immobilized antibody capture, or nonselective immobilization via electrostatic interactions or Schiff base formation. We report a powerful and flexible method for the affinity capture of target proteins for cryo-EM analysis that utilizes small-molecule ligands as bait for concentrating human target proteins directly onto the grid surface for single-particle reconstruction. This approach is demonstrated for human p97, captured using two different small-molecule high-affinity ligands of this AAA+ ATPase. Four electron density maps are revealed, each representing a p97 conformational state captured from solution, including a double-hexamer structure resolved to 3.6 Å. These results demonstrate that the noncovalent capture of protein targets on EM grids modified with high-affinity ligands can enable the structure elucidation of multiple configurational states of the target and potentially inform structure-based drug design campaigns.


Subject(s)
Antibodies , Cryoelectron Microscopy , Humans , Ligands , Physical Phenomena
12.
Prog Biophys Mol Biol ; 160: 37-42, 2021 03.
Article in English | MEDLINE | ID: mdl-32622834

ABSTRACT

JSPR is a single particle cryo-EM image processing and 3D reconstruction software developed in the Jiang laboratory at Purdue University. It began as a few refinement scripts for symmetric and asymmetric reconstructions of icosahedral viruses, but has grown into a comprehensive suite of tools for building ab initio reconstructions, high resolution refinements of viruses, protein complexes of arbitrary symmetries including helical tubes/filaments, and image file handling utilities. In this review, we will present examples achieved using JSPR and demonstrate recently implemented features of JSPR such as multi-aberration "alignments" and automatic optimization of masking for the assessment of map resolution using "true" FSC.


Subject(s)
Cryoelectron Microscopy/methods , Single Molecule Imaging/methods , Viruses/chemistry , Bacteriophages/chemistry , Enterovirus/chemistry , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Protein Conformation , Software , Zika Virus/chemistry
13.
Biomolecules ; 10(9)2020 09 19.
Article in English | MEDLINE | ID: mdl-32961724

ABSTRACT

Encapsulin is a class of nanocompartments that is unique in bacteria and archaea to confine enzymatic activities and sequester toxic reaction products. Here we present a 2.87 Å resolution cryo-EM structure of Thermotoga maritima encapsulin with heterologous protein complex loaded. It is the first successful case of expressing encapsulin and heterologous cargo protein in the insect cell system. Although we failed to reconstruct the cargo protein complex structure due to the signal interference of the capsid shell, we were able to observe some unique features of the cargo-loaded encapsulin shell, for example, an extra density at the fivefold pore that has not been reported before. These results would lead to a more complete understanding of the encapsulin cargo assembly process of T. maritima.


Subject(s)
Bacterial Proteins/ultrastructure , Cryoelectron Microscopy/methods , Multiprotein Complexes/ultrastructure , Nanostructures/ultrastructure , Thermotoga maritima/ultrastructure , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Nanostructures/chemistry , Particle Size , Porosity , Protein Multimerization , Protein Structure, Quaternary , Thermotoga maritima/metabolism
14.
J Virol Methods ; 277: 113792, 2020 03.
Article in English | MEDLINE | ID: mdl-31786314

ABSTRACT

The challenges associated with operating electron microscopes (EM) in biosafety level 3 and 4 containment facilities have slowed progress of cryo-EM studies of high consequence viruses. We address this gap in a case study of Venezuelan Equine Encephalitis Virus (VEEV) strain TC-83. Chemical inactivation of viruses may physically distort structure, and hence to verify retention of native structure, we selected VEEV strain TC-83 to develop this methodology as this virus has a 4.8 Šresolution cryo-EM structure. In our method, amplified VEEV TC-83 was concentrated directly from supernatant through a 30 % sucrose cushion, resuspended, and chemically inactivated with 1 % glutaraldehyde. A second 30 % sucrose cushion removed any excess glutaraldehyde that might interfere with single particle analyses. A cryo-EM map of fixed, inactivated VEEV was determined to a resolution of 7.9 Å. The map retained structural features of the native virus such as the icosahedral symmetry, and the organization of the capsid core and the trimeric spikes. Our results suggest that our strategy can easily be adapted for inactivation of other enveloped, RNA viruses requiring BSL-3 or BSL-4 for cryo-EM. However, the validation of inactivation requires the oversight of Biosafety Committee for each Institution.


Subject(s)
Cryoelectron Microscopy/methods , Encephalitis Virus, Venezuelan Equine/physiology , RNA Viruses/physiology , Virus Inactivation , Animals , Capsid/chemistry , Capsid Proteins , Cell Line , Chlorocebus aethiops , Containment of Biohazards/methods , Encephalitis Virus, Venezuelan Equine/genetics , Glutaral/chemistry , Glutaral/metabolism , Horses , Vero Cells , Virology/methods , Virus Replication
15.
J Struct Biol ; 206(2): 225-232, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30928614

ABSTRACT

Volta Phase Plate (VPP) has become an invaluable tool for cryo-EM structural determination of small protein complexes by increasing image contrast. Currently, the standard protocol of VPP usage periodically changes the VPP position to a fresh spot during data collection. Such a protocol was to target the phase shifts to a relatively narrow range (around 90°) based on the observations of increased phase shifts and image blur associated with more images taken with a single VPP position. Here, we report a 2.87 Šresolution structure of apoferritin reconstructed from a dataset collected using only a single position of VPP. The reconstruction resolution and map density features are nearly identical to the reconstruction from the control dataset collected with periodic change of VPP positions. Further experiments have verified that similar results, including a 2.5 Šresolution structure, could be obtained with a full range of phase shifts, different spots of variable phase shift increasing rates, and at different ages of the VPP post-installation. Furthermore, we have found that the phase shifts at low resolutions, probably related to the finite size of the Volta spots, could not be correctly modeled by current CTF model using a constant phase shift at all frequencies. In dataset III, severe beam tilt issue was identified but could be computationally corrected with iterative refinements. The observations in this study may provide new insights into further improvement of both the efficiency and robustness of VPP, and to help turn VPP into a plug-and-play device for high-resolution cryo-EM.


Subject(s)
Apoferritins/chemistry , Cryoelectron Microscopy/methods , Data Collection , Protein Conformation
16.
Proc Natl Acad Sci U S A ; 115(45): 11608-11612, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30348794

ABSTRACT

Flaviviruses assemble initially in an immature, noninfectious state and undergo extensive conformational rearrangements to generate mature virus. Previous cryo-electron microscopy (cryo-EM) structural studies of flaviviruses assumed icosahedral symmetry and showed the concentric organization of the external glycoprotein shell, the lipid membrane, and the internal nucleocapsid core. We show here that when icosahedral symmetry constraints were excluded in calculating the cryo-EM reconstruction of an immature flavivirus, the nucleocapsid core was positioned asymmetrically with respect to the glycoprotein shell. The core was positioned closer to the lipid membrane at the proximal pole, and at the distal pole, the outer glycoprotein spikes and inner membrane leaflet were either perturbed or missing. In contrast, in the asymmetric reconstruction of a mature flavivirus, the core was positioned concentric with the glycoprotein shell. The deviations from icosahedral symmetry demonstrated that the core and glycoproteins have varied interactions, which likely promotes viral assembly and budding.


Subject(s)
Glycoproteins/chemistry , Nucleocapsid/ultrastructure , Viral Envelope Proteins/chemistry , West Nile virus/ultrastructure , Zika Virus/ultrastructure , Animals , Chlorocebus aethiops , Cryoelectron Microscopy , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Vero Cells , Virus Assembly/physiology , Virus Release/physiology
17.
ACS Nano ; 12(11): 10665-10682, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30234973

ABSTRACT

Homotypic interactions of viral capsid proteins are common, driving viral capsid self-formation. By taking advantage of such interactions of the norovirus shell (S) domain that naturally builds the interior shells of norovirus capsids, we have developed a technology to produce 60-valent, icosahedral S60 nanoparticles through the E. coli system. This has been achieved by several modifications to the S domain, including an R69A mutation to destruct an exposed proteinase cleavage site and triple cysteine mutations (V57C/Q58C/S136C) to establish inter-S domain disulfide bonds for enhanced inter-S domain interactions. The polyvalent S60 nanoparticle with 60 exposed S domain C-termini offers an ideal platform for antigen presentation, leading to enhanced immunogenicity to the surface-displayed antigens for vaccine development. This was proven by constructing a chimeric S60 nanoparticle displaying 60 rotavirus (RV) VP8* proteins, the major RV-neutralizing antigen. These S60-VP8* particles are easily produced and elicited high IgG response in mice toward the displayed VP8* antigens. The mouse antisera after immunization with the S60-VP8* particles exhibited high blockades against RV VP8* binding to its glycan ligands and high neutralizing activities against RV infection in culture cells. The three-dimensional structures of the S60 and S60-VP8* particles were studied. Furthermore, the S60 nanoparticle can display other antigens, supporting the notion that the S60 nanoparticle is a multifunctional vaccine platform. Finally, the intermolecular disulfide bond approach may be used to stabilize other viral-like particles to display foreign antigens for vaccine development.


Subject(s)
Bioengineering , Nanoparticles/chemistry , Rotavirus/immunology , Viral Vaccines/immunology , Animals , Mice , Mice, Inbred BALB C , Rotavirus/isolation & purification , Viral Vaccines/chemistry
18.
J Biol Chem ; 293(45): 17477-17490, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30242131

ABSTRACT

Phospholipase C (PLC) enzymes produce second messengers that increase the intracellular Ca2+ concentration and activate protein kinase C (PKC). These enzymes also share a highly conserved arrangement of core domains. However, the contributions of the individual domains to regulation are poorly understood, particularly in isoforms lacking high-resolution information, such as PLCϵ. Here, we used small-angle X-ray scattering (SAXS), EM, and functional assays to gain insights into the molecular architecture of PLCϵ, revealing that its PH domain is conformationally dynamic and essential for activity. We further demonstrate that the PH domain of PLCß exhibits similar dynamics in solution that are substantially different from its conformation observed in multiple previously reported crystal structures. We propose that this conformational heterogeneity contributes to subfamily-specific differences in activity and regulation by extracellular signals.


Subject(s)
Molecular Dynamics Simulation , Pleckstrin Homology Domains , Type C Phospholipases/chemistry , Animals , Humans , Mutation , Rats , Type C Phospholipases/genetics , Type C Phospholipases/metabolism
19.
J Biol Chem ; 293(19): 7367-7375, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29581236

ABSTRACT

First step of gene expression is transcribing the genetic information stored in DNA to RNA by the transcription machinery including RNA polymerase (RNAP). In Escherichia coli, a primary σ70 factor forms the RNAP holoenzyme to express housekeeping genes. The σ70 contains a large insertion between the conserved regions 1.2 and 2.1, the σ non-conserved region (σNCR), but its function remains to be elucidated. In this study, we determined the cryo-EM structures of the E. coli RNAP σ70 holoenzyme and its complex with promoter DNA (open complex, RPo) at 4.2 and 5.75 Å resolutions, respectively, to reveal native conformations of RNAP and DNA. The RPo structure presented here found an interaction between the σNCR and promoter DNA just upstream of the -10 element, which was not observed in a previously determined E. coli RNAP transcription initiation complex (RPo plus short RNA) structure by X-ray crystallography because of restraint of crystal packing effects. Disruption of the σNCR and DNA interaction by the amino acid substitutions (R157A/R157E) influences the DNA opening around the transcription start site and therefore decreases the transcription activity of RNAP. We propose that the σNCR and DNA interaction is conserved in proteobacteria, and RNAP in other bacteria replaces its role with a transcription factor.


Subject(s)
Cryoelectron Microscopy/methods , DNA, Bacterial/genetics , DNA-Binding Proteins/metabolism , DNA-Directed RNA Polymerases/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Promoter Regions, Genetic , Sigma Factor/chemistry , DNA, Bacterial/chemistry , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Genes, Bacterial , Genes, Essential , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Sigma Factor/metabolism , Transcription Initiation Site , Transcription, Genetic
20.
Proc Natl Acad Sci U S A ; 111(43): E4606-14, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25313071

ABSTRACT

Many dsDNA viruses first assemble a DNA-free procapsid, using a scaffolding protein-dependent process. The procapsid, then, undergoes dramatic conformational maturation while packaging DNA. For bacteriophage T7 we report the following four single-particle cryo-EM 3D reconstructions and the derived atomic models: procapsid (4.6-Å resolution), an early-stage DNA packaging intermediate (3.5 Å), a later-stage packaging intermediate (6.6 Å), and the final infectious phage (3.6 Å). In the procapsid, the N terminus of the major capsid protein, gp10, has a six-turn helix at the inner surface of the shell, where each skewed hexamer of gp10 interacts with two scaffolding proteins. With the exit of scaffolding proteins during maturation the gp10 N-terminal helix unfolds and swings through the capsid shell to the outer surface. The refolded N-terminal region has a hairpin that forms a novel noncovalent, joint-like, intercapsomeric interaction with a pocket formed during shell expansion. These large conformational changes also result in a new noncovalent, intracapsomeric topological linking. Both interactions further stabilize the capsids by interlocking all pentameric and hexameric capsomeres in both DNA packaging intermediate and phage. Although the final phage shell has nearly identical structure to the shell of the DNA-free intermediate, surprisingly we found that the icosahedral faces of the phage are slightly (∼4 Å) contracted relative to the faces of the intermediate, despite the internal pressure from the densely packaged DNA genome. These structures provide a basis for understanding the capsid maturation process during DNA packaging that is essential for large numbers of dsDNA viruses.


Subject(s)
Bacteriophage T7/chemistry , Capsid/chemistry , Cryoelectron Microscopy , Image Processing, Computer-Assisted , Models, Molecular , Bacteriophage T7/ultrastructure , Capsid/ultrastructure , Capsid Proteins/chemistry , DNA Packaging , Protein Binding , Protein Structure, Secondary , Virus Assembly
SELECTION OF CITATIONS
SEARCH DETAIL
...