Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
SLAS Discov ; 29(1): 40-51, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37714432

ABSTRACT

Surface plasmon resonance (SPR) biosensor methods are ideally suited for fragment-based lead discovery.  However, generally applicable experimental procedures and detailed protocols are lacking, especially for structurally or physico-chemically challenging targets or when tool compounds are not available. Success depends on accounting for the features of both the target and the chemical library, purposely designing screening experiments for identification and validation of hits with desired specificity and mode-of-action, and availability of orthogonal methods capable of confirming fragment hits. The range of targets and libraries amenable to an SPR biosensor-based approach for identifying hits is considerably expanded by adopting multiplexed strategies, using multiple complementary surfaces or experimental conditions. Here we illustrate principles and multiplexed approaches for using flow-based SPR biosensor systems for screening fragment libraries of different sizes (90 and 1056 compounds) against a selection of challenging targets. It shows strategies for the identification of fragments interacting with 1) large and structurally dynamic targets, represented by acetyl choline binding protein (AChBP), a Cys-loop receptor ligand gated ion channel homologue, 2) targets in multi protein complexes, represented by lysine demethylase 1 and a corepressor (LSD1/CoREST), 3) structurally variable or unstable targets, represented by farnesyl pyrophosphate synthase (FPPS), 4) targets containing intrinsically disordered regions, represented by protein tyrosine phosphatase 1B  (PTP1B), and 5) aggregation-prone proteins, represented by an engineered form of human tau  (tau K18M). Practical considerations and procedures accounting for the characteristics of the proteins and libraries, and that increase robustness, sensitivity, throughput and versatility are highlighted. The study shows that the challenges for addressing these types of targets is not identification of potentially useful fragments per se, but establishing methods for their validation and evolution into leads.


Subject(s)
Biosensing Techniques , Surface Plasmon Resonance , Humans , Surface Plasmon Resonance/methods , Small Molecule Libraries/pharmacology , Proteins , Carrier Proteins
2.
Eur J Med Chem ; 231: 114163, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35131537

ABSTRACT

Intrinsically disordered proteins (IDPs) play important roles in disease pathologies; however, their lack of defined stable 3D structures make traditional drug design strategies typically less effective against these targets. Based on promising results of targeted covalent inhibitors (TCIs) on challenging targets, we have developed a covalent design strategy targeting IDPs. As a model system we chose tau, an endogenous IDP of the central nervous system that is associated with severe neurodegenerative diseases via its aggregation. First, we mapped the tractability of available cysteines in tau and prioritized suitable warheads. Next, we introduced the selected vinylsulfone warhead to the non-covalent scaffolds of potential tau aggregation inhibitors. The designed covalent tau binders were synthesized and tested in aggregation models, and inhibited tau aggregation effectively. Our results revealed the usefulness of the covalent design strategy against therapeutically relevant IDP targets and provided promising candidates for the treatment of tauopathies.


Subject(s)
Intrinsically Disordered Proteins , Neurodegenerative Diseases , Tauopathies , Cysteine , Drug Design , Humans , Intrinsically Disordered Proteins/chemistry , Neurodegenerative Diseases/metabolism , Tauopathies/drug therapy , tau Proteins/metabolism
3.
Int J Mol Sci ; 21(15)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722166

ABSTRACT

Over the past decade intrinsically disordered proteins (IDPs) have emerged as a biologically important class of proteins, many of which are of therapeutic relevance. Here, we investigated the interactions between a model IDP system, tau K18, and nine literature compounds that have been reported as having an effect on tau in order to identify a robust IDP-ligand system for the optimization of a range of biophysical methods. We used NMR, surface plasmon resonance (SPR) and microscale thermophoresis (MST) methods to investigate the binding of these compounds to tau K18; only one showed unambiguous interaction with tau K18. Several near neighbors of this compound were synthesized and their interactions with tau K18 characterized using additional NMR methods, including 1D ligand-observed NMR, diffusion-ordered spectroscopy (DOSY) and 19F NMR. This study demonstrates that it is possible to detect and characterize IDP-ligand interactions using biophysical methods. However, care must be taken to account for possible artefacts, particularly the impact of compound solubility and where the protein has to be immobilized.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Molecular Docking Simulation , tau Proteins/chemistry , Humans , Ligands , Nuclear Magnetic Resonance, Biomolecular
SELECTION OF CITATIONS
SEARCH DETAIL