Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 279(30): 31357-64, 2004 Jul 23.
Article in English | MEDLINE | ID: mdl-15140893

ABSTRACT

Efficient signaling requires accurate spatial and temporal compartmentalization of proteins. RACK1 is a scaffolding protein that fulfils this role through interaction of binding partners with one of its seven WD40 domains. We recently identified the kinase Fyn and the NR2B subunit of the N-methyl-D-Aspartate receptor (NMDAR) as binding partners of RACK1. Scaffolding of Fyn near its substrate NR2B by RACK1 inhibits Fyn phosphorylation of NR2B and thereby negatively regulates channel function. We found that Fyn and NR2B share the same binding site on RACK1; however, their binding to RACK1 is not mutually exclusive (Yaka, R., Thornton, C., Vagts, A. J., Phamluong, K., Bonci, A., and Ron, D. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 5710-5715). We therefore tested the hypothesis that RACK1 forms a homodimer that allows the simultaneous binding of Fyn and NR2B. We found that RACK1 binds to itself both in vitro and in the brain. Deletion analyses identified a RACK1-RACK1 dimer-binding site within the 4th WD40 repeat, and application of the 4th WD40 repeat or a peptide derivative to hippocampal slices inhibited NMDAR activity. We further found that in hippocampal slices, both RACK1 and NR2B associated with another WD40 protein, the beta-subunit of G protein (Gbeta), previously shown to heterodimerize with RACK1 in vitro (Dell, E. J., Connor, J., Chen, S., Stebbins, E. G., Skiba, N. P., Mochly-Rosen, D., and Hamm, H. E. (2002) J. Biol. Chem. 277, 49888-49895). However, activation of the pituitary adenylate cyclase polypeptide (1-38) G protein-coupled receptor, previously found to induce the dissociation of RACK1 from the NMDAR complex (Yaka, R., He, D. Y., Phamluong, K., and Ron, D. (2003) J. Biol. Chem. 278, 9630-9638), attenuated the association of Gbeta with RACK1 and NR2B. Based on these results, we propose that WD40-mediated homo- and heterodimerization of RACK1 mediate the formation of a transient signaling complex that includes the NMDAR, a G protein and Fyn.


Subject(s)
Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Amino Acid Sequence , Animals , Dimerization , GTP-Binding Protein beta Subunits/metabolism , Hippocampus , In Vitro Techniques , Models, Molecular , Protein Binding , Protein Kinase C/metabolism , Protein Structure, Tertiary , Rats , Rats, Sprague-Dawley , Receptors for Activated C Kinase , Receptors, Cell Surface/genetics
2.
Alcohol Clin Exp Res ; 27(10): 1599-605, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14574230

ABSTRACT

BACKGROUND: Previously, we found that acute ethanol induces the translocation of the scaffolding protein RACK1 to the nucleus. Recently, we found that nuclear RACK1 mediates acute ethanol induction of immediate early gene c-fos expression. Alterations in gene expression are thought to lead to long-term changes that ultimately contribute to the development of alcohol addiction and toxicity. Therefore, we sought to determine the effects of chronic exposure of cells to ethanol on the cellular compartmentalization of RACK1 and on c-fos messenger RNA (mRNA) and protein expression. METHODS: Rat C6 glioma cells were used as the cell culture model. Immunohistochemistry was implemented to visualize the localization of RACK1 and to monitor the protein level of c-fos. Reverse-transcription polymerase chain reaction was used to measure c-fos mRNA levels. The Tat-protein transduction method was used to transduce recombinant Tat-RACK1 into cells as previously described. RESULTS: Chronic exposure of cells to 200 mM ethanol for 24 and 48 hr resulted in the gradual re-distribution of RACK1 out of the nucleus. It is interesting to note that acute ethanol re-challenge immediately after chronic treatment did not result in RACK1 translocation to the nucleus, and nuclear compartmentalization of RACK1 in response to acute ethanol was detected only after 24 hr of withdrawal. Similar patterns were obtained for c-fos expression. Chronic exposure to ethanol did not result in an increase in mRNA or protein levels of c-fos. Furthermore, acute ethanol exposure did not increase c-fos protein levels in cells that were first treated chronically with ethanol. However, transduction of exogenous RACK1 expressed as a Tat-fusion protein was able to rescue c-fos mRNA expression after chronic ethanol exposure. CONCLUSIONS: Our data suggest that RACK1 nuclear compartmentalization and ethanol-induced c-fos expression are transient and are desensitized to ethanol during prolonged exposure to high concentrations. The desensitization is temporary, and RACK1 can respond to acute ethanol treatment after a 24-hr withdrawal period. Our data further suggest that the altered compartmentalization of RACK1 leads to differences in c-fos expression upon acute or chronic exposure to ethanol. In summary, RACK1 is an important molecular mediator of the acute and chronic actions of ethanol on the expression of c-fos. These findings could have implications for the molecular signaling pathways leading to pathologic states associated with alcoholism, including toxicity.


Subject(s)
Adaptation, Physiological/drug effects , Cell Compartmentation/drug effects , Ethanol/administration & dosage , Neoplasm Proteins/physiology , Adaptation, Physiological/physiology , Animals , Cell Compartmentation/physiology , Cell Death/drug effects , Cell Death/physiology , Cell Line, Tumor , Dose-Response Relationship, Drug , GTP-Binding Proteins , Genes, fos/drug effects , Genes, fos/physiology , Rats , Receptors for Activated C Kinase , Receptors, Cell Surface
3.
Genome Res ; 13(10): 2265-70, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12975309

ABSTRACT

A large-scale effort, termed the Secreted Protein Discovery Initiative (SPDI), was undertaken to identify novel secreted and transmembrane proteins. In the first of several approaches, a biological signal sequence trap in yeast cells was utilized to identify cDNA clones encoding putative secreted proteins. A second strategy utilized various algorithms that recognize features such as the hydrophobic properties of signal sequences to identify putative proteins encoded by expressed sequence tags (ESTs) from human cDNA libraries. A third approach surveyed ESTs for protein sequence similarity to a set of known receptors and their ligands with the BLAST algorithm. Finally, both signal-sequence prediction algorithms and BLAST were used to identify single exons of potential genes from within human genomic sequence. The isolation of full-length cDNA clones for each of these candidate genes resulted in the identification of >1000 novel proteins. A total of 256 of these cDNAs are still novel, including variants and novel genes, per the most recent GenBank release version. The success of this large-scale effort was assessed by a bioinformatics analysis of the proteins through predictions of protein domains, subcellular localizations, and possible functional roles. The SPDI collection should facilitate efforts to better understand intercellular communication, may lead to new understandings of human diseases, and provides potential opportunities for the development of therapeutics.


Subject(s)
Cell Adhesion Molecules, Neuronal , Computational Biology/methods , Membrane Proteins/genetics , Proteins/genetics , Proteins/metabolism , GPI-Linked Proteins , Gene Library , Humans , Molecular Sequence Data , Predictive Value of Tests , Protein Sorting Signals/genetics
4.
Mol Pharmacol ; 62(2): 272-80, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12130678

ABSTRACT

Scaffolding proteins such as receptor for activated C kinase (RACK) 1 are involved in the targeting of signaling proteins and play an important role in the regulation of signal transduction cascades. Recently, we found that in cultured cells and in vivo, acute ethanol exposure induces the nuclear compartmentalization of RACK1. To elucidate a physiological role for nuclear RACK1, the Tat protein transduction system was used to transduce RACK1 and RACK1-derived fragments into C6 glioma cells. We found that nuclear RACK1 is mediating the induction of the immediate early gene c-fos expression induced by ethanol. First, transduction of full-length RACK1 (Tat-RACK1) resulted in the induction of c-fos expression and enhancement of ethanol activities. Second, we determined that the C terminus of RACK1 (Tat-RACK1DeltaN) is mediating transcription. Third, we identified a dominant negative fragment of RACK1 that inhibited the nuclear compartmentalization of endogenous RACK1 and inhibited ethanol-induction of c-fos mRNA and protein expression. Last, acute exposure to ethanol or transduction of full-length Tat-RACK1 resulted in an increase in mRNA levels of an activator protein 1 site-containing gene, PAC1 (pituitary adenylate cyclase-activating polypeptide receptor type I), suggesting that nuclear RACK1 is involved in the regulation of the expression of genes that are altered upon acute ethanol treatment. These results may therefore have important implications for the study of alcohol addiction.


Subject(s)
Cell Compartmentation/drug effects , Ethanol/pharmacology , Gene Expression/drug effects , Peptides/metabolism , Animals , Cell Nucleus , Neuropeptides/genetics , Neuropeptides/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide , Proto-Oncogene Proteins c-fos/biosynthesis , Proto-Oncogene Proteins c-fos/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/drug effects , Rats , Receptors for Activated C Kinase , Tumor Cells, Cultured
5.
Proc Natl Acad Sci U S A ; 99(8): 5710-5, 2002 Apr 16.
Article in English | MEDLINE | ID: mdl-11943848

ABSTRACT

Phosphorylation regulates the function of ligand-gated ion channels such as the N-methyl d-aspartate (NMDA) receptor. Here we report a mechanism for modulation of the phosphorylation state and function of the NMDA receptor via an inhibitory scaffolding protein, RACK1. We found that RACK1 binds both the NR2B subunit of the NMDA receptor and the nonreceptor protein tyrosine kinase, Fyn. RACK1 inhibits Fyn phosphorylation of NR2B and decreases NMDA receptor-mediated currents in CA1 hippocampal slices. Peptides that disrupt the interactions between RACK1, NR2B, and Fyn induce phosphorylation and potentiate NMDA receptor-mediated currents. Therefore, RACK1 is a regulator of NMDA receptor function and may play a role in synaptic plasticity, addiction, learning, and memory.


Subject(s)
Gene Expression Regulation , Neoplasm Proteins/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Amino Acid Sequence , Animals , DNA, Complementary/metabolism , Dose-Response Relationship, Drug , Electrophysiology , Escherichia coli/metabolism , GTP-Binding Proteins , Hippocampus/metabolism , Humans , Male , Molecular Sequence Data , Peptides/chemistry , Phosphorylation , Precipitin Tests , Protein Binding , Protein Biosynthesis , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-fyn , Rats , Rats, Sprague-Dawley , Receptors for Activated C Kinase , Receptors, Cell Surface , Recombinant Proteins/metabolism , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...