Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 12(4): 293-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23503010

ABSTRACT

Ultrafast laser techniques have revealed extraordinary spin dynamics in magnetic materials that equilibrium descriptions of magnetism cannot explain. Particularly important for future applications is understanding non-equilibrium spin dynamics following laser excitation on the nanoscale, yet the limited spatial resolution of optical laser techniques has impeded such nanoscale studies. Here we present ultrafast diffraction experiments with an X-ray laser that probes the nanoscale spin dynamics following optical laser excitation in the ferrimagnetic alloy GdFeCo, which exhibits macroscopic all-optical switching. Our study reveals that GdFeCo displays nanoscale chemical and magnetic inhomogeneities that affect the spin dynamics. In particular, we observe Gd spin reversal in Gd-rich nanoregions within the first picosecond driven by the non-local transfer of angular momentum from larger adjacent Fe-rich nanoregions. These results suggest that a magnetic material's microstructure can be engineered to control transient laser-excited spins, potentially allowing faster (~ 1 ps) spin reversal than in present technologies.

2.
Nat Commun ; 3: 666, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22314362

ABSTRACT

The question of how, and how fast, magnetization can be reversed is a topic of great practical interest for the manipulation and storage of magnetic information. It is generally accepted that magnetization reversal should be driven by a stimulus represented by time-non-invariant vectors such as a magnetic field, spin-polarized electric current, or cross-product of two oscillating electric fields. However, until now it has been generally assumed that heating alone, not represented as a vector at all, cannot result in a deterministic reversal of magnetization, although it may assist this process. Here we show numerically and demonstrate experimentally a novel mechanism of deterministic magnetization reversal in a ferrimagnet driven by an ultrafast heating of the medium resulting from the absorption of a sub-picosecond laser pulse without the presence of a magnetic field.

3.
Nature ; 472(7342): 205-8, 2011 Apr 14.
Article in English | MEDLINE | ID: mdl-21451521

ABSTRACT

Ferromagnetic or antiferromagnetic spin ordering is governed by the exchange interaction, the strongest force in magnetism. Understanding spin dynamics in magnetic materials is an issue of crucial importance for progress in information processing and recording technology. Usually the dynamics are studied by observing the collective response of exchange-coupled spins, that is, spin resonances, after an external perturbation by a pulse of magnetic field, current or light. The periods of the corresponding resonances range from one nanosecond for ferromagnets down to one picosecond for antiferromagnets. However, virtually nothing is known about the behaviour of spins in a magnetic material after being excited on a timescale faster than that corresponding to the exchange interaction (10-100 fs), that is, in a non-adiabatic way. Here we use the element-specific technique X-ray magnetic circular dichroism to study spin reversal in GdFeCo that is optically excited on a timescale pertinent to the characteristic time of the exchange interaction between Gd and Fe spins. We unexpectedly find that the ultrafast spin reversal in this material, where spins are coupled antiferromagnetically, occurs by way of a transient ferromagnetic-like state. Following the optical excitation, the net magnetizations of the Gd and Fe sublattices rapidly collapse, switch their direction and rebuild their net magnetic moments at substantially different timescales; the net magnetic moment of the Gd sublattice is found to reverse within 1.5 picoseconds, which is substantially slower than the Fe reversal time of 300 femtoseconds. Consequently, a transient state characterized by a temporary parallel alignment of the net Gd and Fe moments emerges, despite their ground-state antiferromagnetic coupling. These surprising observations, supported by atomistic simulations, provide a concept for the possibility of manipulating magnetic order on the timescale of the exchange interaction.

4.
Phys Rev Lett ; 103(11): 117201, 2009 Sep 11.
Article in English | MEDLINE | ID: mdl-19792396

ABSTRACT

Using time-resolved single-shot pump-probe microscopy we unveil the mechanism and the time scale of all-optical magnetization reversal by a single circularly polarized 100 fs laser pulse. We demonstrate that the reversal has a linear character, i.e., does not involve precession but occurs via a strongly nonequilibrium state. Calculations show that the reversal time which can be achieved via this mechanism is within 10 ps for a 30 nm domain. Using two single subpicosecond laser pulses we demonstrate that for a 5 microm domain the magnetic information can be recorded and readout within 30 ps, which is the fastest "write-read" event demonstrated for magnetic recording so far.

SELECTION OF CITATIONS
SEARCH DETAIL
...