Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38979195

ABSTRACT

Random fluctuations (noise) in gene expression can be studied from two complementary perspectives: following expression in a single cell over time or comparing expression between cells in a proliferating population at a given time. Here, we systematically investigated scenarios where both perspectives lead to different levels of noise in a given gene product. We first consider a stable protein, whose concentration is diluted by cellular growth, and the protein inhibits growth at high concentrations, establishing a positive feedback loop. For a stochastic model with molecular bursting of gene products, we analytically predict and contrast the steady-state distributions of protein concentration in both frameworks. Although positive feedback amplifies the noise in expression, this amplification is much higher in the population framework compared to following a single cell over time. We also study other processes that lead to different noise levels even in the absence of such dilution-based feedback. When considering randomness in the partitioning of molecules between daughters during mitosis, we find that in the single-cell perspective, the noise in protein concentration is independent of noise in the cell cycle duration. In contrast, partitioning noise is amplified in the population perspective by increasing randomness in cell-cycle time. Overall, our results show that the commonly used single-cell framework that does not account for proliferating cells can, in some cases, underestimate the noise in gene product levels. These results have important implications for studying the inter-cellular variation of different stress-related expression programs across cell types that are known to inhibit cellular growth.

2.
bioRxiv ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37873216

ABSTRACT

In a chemical synapse, information flow occurs via the release of neurotransmitters from a presynaptic neuron that triggers an Action potential (AP) in the postsynaptic neuron. At its core, this occurs via the postsynaptic membrane potential integrating neurotransmitter-induced synaptic currents, and AP generation occurs when potential reaches a critical threshold. This manuscript investigates feedback implementation via an autapse, where the axon from the postsynaptic neuron forms an inhibitory synapse onto itself. Using a stochastic model of neuronal synaptic transmission, we formulate AP generation as a first-passage time problem and derive expressions for both the mean and noise of AP-firing times. Our analytical results supported by stochastic simulations identify parameter regimes where autaptic feedback transmission enhances the precision of AP firing times consistent with experimental data. These noise attenuating regimes are intuitively based on two orthogonal mechanisms - either expanding the time window to integrate noisy upstream signals; or by linearizing the mean voltage increase over time. Interestingly, we find regimes for noise amplification that specifically occur when the inhibitory synapse has a low probability of release for synaptic vesicles. In summary, this work explores feedback modulation of the stochastic dynamics of autaptic neurotransmission and reveals its function of creating more regular AP firing patterns.

3.
bioRxiv ; 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38234762

ABSTRACT

Single cells actively coordinate growth and division to regulate their size, yet how this size homeostasis at the single-cell level propagates over multiple generations to impact clonal expansion remains fundamentally unexplored. Classical timer models for cell proliferation (where the duration of the cell cycle is an independent variable) predict that the stochastic variation in colony size will increase monotonically over time. In stark contrast, implementing size control according to adder strategy (where on average a fixed size added from cell birth to division) leads to colony size variations that eventually decay to zero. While these results assume a fixed size of the colony-initiating progenitor cell, further analysis reveals that the magnitude of the intercolony variation in population number is sensitive to heterogeneity in the initial cell size. We validate these predictions by tracking the growth of isogenic microcolonies of Corynebacterium glutamicum in microfluidic chambers. Approximating their cell shape to a capsule, we observe that the degree of random variability in cell size is different depending on whether the cell size is quantified as per length, surface area, or volume, but size control remains an adder regardless of these size metrics. A comparison of the observed variability in the colony population with the predictions suggests that proliferation matches better with a cell division based on the cell surface. In summary, our integrated mathematical-experimental approach bridges the paradigms of single-cell size regulation and clonal expansion at the population levels. This innovative approach provides elucidation of the mechanisms of size homeostasis from the stochastic dynamics of colony size for rod-shaped microbes.

SELECTION OF CITATIONS
SEARCH DETAIL
...