Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Ground Water ; 62(5): 804-816, 2024.
Article in English | MEDLINE | ID: mdl-38816964

ABSTRACT

Water constitutes an indispensable resource vital for sustaining life. In this context, groundwater stands out as a paramount global water source. Throughout history, underground dams (UGDs) have been employed to augment the storage capacity of local aquifers. This study employs a multistep elimination approach to identify optimal locations for constructing UGDs in the Bursa district, Turkey. Initially, the Digital Elevation Model (DEM) is utilized to pinpoint the potential construction sites at the watershed scale. Criteria such as suitable topographic slope range, proximity to the transport infrastructures, presence of natural or artificial reservoirs, distance to active or inactive faults, proximity to the urban and rural settlements, location of the irrigation zones, geological conditions, distance to the consumption hubs, thickness of alluvium layer, and the groundwater depth are used to establish the buffer zones for exclusion of potential sites. Then, storage volume in the proposed sites is determined, and formal requests from the local communities are taken into consideration for determining the best UGD sites. The study concludes that five UGDs for irrigation and one for drinking water purposes could be recommended for further implementation.


Subject(s)
Groundwater , Water Supply , Turkey
2.
Big Data ; 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36917149

ABSTRACT

A joint determination of horizontal and vertical movement of water through porous medium is addressed in this study through fast multi-output relevance vector regression (FMRVR). To do this, an experimental data set conducted in a sand box with 300 × 300 × 150 mm dimensions made of Plexiglas is used. A random mixture of sand having size of 0.5-1 mm is used to simulate the porous medium. Within the experiments, 2, 3, 7, and 12 cm walls are used together with different injection locations as 130.7, 91.3, and 51.8 mm measured from the cutoff wall at the upstream. Then, the Cartesian coordinated of the tracer, time interval, length of the wall in each setup, and two dummy variables for determination of the initial point are considered as independent variables for joint estimation of horizontal and vertical velocity of water movement in the porous medium. Alternatively, the multi-linear regression, random forest, and the support vector regression approaches are used to alternate the results obtained by the FMRVR method. It was concluded that the FMRVR outperforms the other models, while the uncertainty in estimation of horizontal penetration is larger than the vertical one.

3.
Environ Res ; 217: 114856, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36410463

ABSTRACT

Multiple kernel fusion (MKF) refers to the task of combining multiple sources of information in the Hilbert space for improved performance. Very often the combined kernel is formed as a linear composition of multiple base kernels where the combination weights are learned from the data. As the first application of an MKF approach in hydrological modeling, lake water depth as one of the pivot factors in the reservoir analysis is simulated by considering different hydro-meteorological variables. The role of each individual input parameter is initially investigated by applying a kernel regression approach. We then illustrate the utility of an MKF formalism which learns kernel combination of weights to yield an optimal composition for kernel regression. A set of 40-year data collected from 27 groundwater and streamflow stations and 7 meteorological stations for precipitation and evaporation parameters in the vicinity of Lake Urmia are utilized for model development. Both visual and quantitative statistical performance criteria illustrate a superior performance for the MKF approach compared to kernel ridge regression (KRR), the support vector regression (SVR), back propagation neural network (BPNN) and auto regressive (AR) models. More specifically, while each individual input parameter fails to provide an accurate prediction for lake water depth modeling, an optimal combination of all input parameters incorporating the groundwater level, streamflow, precipitation and evaporation via a multiple kernel learning approach enhances the predictive performance of the model accuracy in the multiple scenarios. The promising results (RMSE = 0.098 m; R2 = 0.987; NSE = 0.986) may motivate the application of a MKF approach towards solving alternative and complex hydrological problems.


Subject(s)
Groundwater , Lakes , Neural Networks, Computer , Hydrology , Water
4.
Environ Sci Pollut Res Int ; 29(26): 39860-39876, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35113369

ABSTRACT

This study addresses the link between suspended sediment concentration, precipitation, streamflow, and direct runoff components. This is important since suspended sediment concentration in the streamflow has invaluable importance in the management of the river basin. For this, the daily streamflow time series in five consecutive stations at Upper Rhone River Basin, a relatively large basin in the Alpine region of Switzerland, daily precipitation at one station, and the twice a week suspended sediment concentration records at the most downstream station between January 1981 and October 2020 are used. Initially, the base flow and the direct runoff associated with streamflow time series are obtained using the sliding interval method. Elasticity analyses between streamflow and suspended sediment concentration together with correlation, autocorrelation, partial autocorrelation, stationarity, and homogeneity are examined by the Augmented Dickey-Fuller and Pettitt's tests, respectively. Then, various stochastic scenarios are generated using the autoregressive moving average exogenous method (ARMAX). It is concluded that the precipitation and direct runoff have fewer effects on the suspended sediment concentration at downstream of the river. Hence, the cumulative effect of the glacier or snowmelt and channel erosion may exceed the effect of rain blown washouts on the suspended sediment concentration at the Port du Scex station. It is found that the ARMAX model results are satisfactory and can be suggested for further application.


Subject(s)
Rain , Rivers , Environmental Monitoring , Geologic Sediments/analysis , Ice Cover , Switzerland
5.
Environ Sci Pollut Res Int ; 27(12): 13131-13141, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32016876

ABSTRACT

Field capacity (FC) and permanent wilting point (PWP) are two important properties of the soil when the soil moisture is concerned. Since the determination of these parameters is expensive and time-consuming, this study aims to develop and evaluate a new hybrid of artificial neural network model coupled with a whale optimization algorithm (ANN-WOA) as a meta-heuristic optimization tool in defining the FC and the PWP at the basin scale. The simulated results were also compared with other core optimization models of ANN and multilinear regression (MLR). For this aim, a set of 217 soil samples were taken from different regions located across the West and East Azerbaijan provinces in Iran, partially covering four important basins of Lake Urmia, Caspian Sea, Persian Gulf-Oman Sea, and Central-Basin of Iran. Taken samples included portion of clay, sand, and silt together with organic matter, which were used as independent variables to define the FC and the PWP. A 80-20 portion of the randomly selected independent and dependent variable sets were used in calibration and validation of the predefined models. The most accurate predictions for the FC and PWP at the selected stations were obtained by the hybrid ANN-WOA models, and evaluation criteria at the validation phases were obtained as 2.87%, 0.92, and 2.11% respectively for RMSE, R2, and RRMSE for the FC, and 1.78%, 0.92, and 10.02% respectively for RMSE, R2, and RRMSE for the PWP. It is concluded that the organic matter is the most important variable in prediction of FC and PWP, while the proposed ANN-WOA model is an efficient approach in defining the FC and the PWP at the basin scale.


Subject(s)
Soil , Whales , Animals , Azerbaijan , Iran , Oman
SELECTION OF CITATIONS
SEARCH DETAIL