Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 241(2): 747-763, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37964509

ABSTRACT

Land plants evolved multiple adaptations to restrict transpiration. However, the underlying molecular mechanisms are not sufficiently understood. We used an ozone-sensitivity forward genetics approach to identify Arabidopsis thaliana mutants impaired in gas exchange regulation. High water loss from detached leaves and impaired decrease of leaf conductance in response to multiple stomata-closing stimuli were identified in a mutant of MURUS1 (MUR1), an enzyme required for GDP-l-fucose biosynthesis. High water loss observed in mur1 was independent from stomatal movements and instead could be linked to metabolic defects. Plants defective in import of GDP-l-Fuc into the Golgi apparatus phenocopied the high water loss of mur1 mutants, linking this phenotype to Golgi-localized fucosylation events. However, impaired fucosylation of xyloglucan, N-linked glycans, and arabinogalactan proteins did not explain the aberrant water loss of mur1 mutants. Partial reversion of mur1 water loss phenotype by borate supplementation and high water loss observed in boron uptake mutants link mur1 gas exchange phenotypes to pleiotropic consequences of l-fucose and boron deficiency, which in turn affect mechanical and morphological properties of stomatal complexes and whole-plant physiology. Our work emphasizes the impact of fucose metabolism and boron uptake on plant-water relations.


Subject(s)
Arabidopsis , Fucose , Fucose/metabolism , Guanosine Diphosphate Fucose/metabolism , Boron/metabolism , Arabidopsis/metabolism , Polysaccharides/metabolism
2.
Sci Adv ; 8(49): eabq6161, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36475789

ABSTRACT

The continuing rise in the atmospheric carbon dioxide (CO2) concentration causes stomatal closing, thus critically affecting transpirational water loss, photosynthesis, and plant growth. However, the primary CO2 sensor remains unknown. Here, we show that elevated CO2 triggers interaction of the MAP kinases MPK4/MPK12 with the HT1 protein kinase, thus inhibiting HT1 kinase activity. At low CO2, HT1 phosphorylates and activates the downstream negatively regulating CBC1 kinase. Physiologically relevant HT1-mediated phosphorylation sites in CBC1 are identified. In a genetic screen, we identify dominant active HT1 mutants that cause insensitivity to elevated CO2. Dominant HT1 mutants abrogate the CO2/bicarbonate-induced MPK4/12-HT1 interaction and HT1 inhibition, which may be explained by a structural AlphaFold2- and Gaussian-accelerated dynamics-generated model. Unexpectedly, MAP kinase activity is not required for CO2 sensor function and CO2-triggered HT1 inhibition and stomatal closing. The presented findings reveal that MPK4/12 and HT1 together constitute the long-sought primary stomatal CO2/bicarbonate sensor upstream of the CBC1 kinase in plants.

4.
Plant Physiol ; 187(4): 2126-2133, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34009364

ABSTRACT

Initiation of stomatal closure by various stimuli requires activation of guard cell plasma membrane anion channels, which are defined as rapid (R)- and slow (S)-type. The single-gene loss-of-function mutants of these proteins are well characterized. However, the impact of suppressing both the S- and R-type channels has not been studied. Here, by generating and studying double and triple Arabidopsis thaliana mutants of SLOW ANION CHANNEL1 (SLAC1), SLAC1 HOMOLOG3 (SLAH3), and ALUMINUM-ACTIVATED MALATE TRANSPORTER 12/QUICK-ACTIVATING ANION CHANNEL 1 (QUAC1), we show that impairment of R- and S-type channels gradually increased whole-plant steady-state stomatal conductance. Ozone-induced cell death also increased gradually in higher-order mutants with the highest levels observed in the quac1 slac1 slah3 triple mutant. Strikingly, while single mutants retained stomatal responsiveness to abscisic acid, darkness, reduced air humidity, and elevated CO2, the double mutant lacking SLAC1 and QUAC1 was nearly insensitive to these stimuli, indicating the need for coordinated activation of both R- and S-type anion channels in stomatal closure.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Membrane/metabolism , Ion Channels/metabolism , Membrane Proteins/metabolism , Plant Stomata/metabolism , Potassium Channels/metabolism , Genetic Variation , Genotype , Ion Channels/genetics , Membrane Proteins/genetics , Mutation , Plant Stomata/genetics , Potassium Channels/genetics
5.
Plant Cell ; 30(11): 2813-2837, 2018 11.
Article in English | MEDLINE | ID: mdl-30361234

ABSTRACT

Guard cells control the aperture of stomatal pores to balance photosynthetic carbon dioxide uptake with evaporative water loss. Stomatal closure is triggered by several stimuli that initiate complex signaling networks to govern the activity of ion channels. Activation of SLOW ANION CHANNEL1 (SLAC1) is central to the process of stomatal closure and requires the leucine-rich repeat receptor-like kinase (LRR-RLK) GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1), among other signaling components. Here, based on functional analysis of nine Arabidopsis thaliana ghr1 mutant alleles identified in two independent forward-genetic ozone-sensitivity screens, we found that GHR1 is required for stomatal responses to apoplastic reactive oxygen species, abscisic acid, high CO2 concentrations, and diurnal light/dark transitions. Furthermore, we show that the amino acid residues of GHR1 involved in ATP binding are not required for stomatal closure in Arabidopsis or the activation of SLAC1 anion currents in Xenopus laevis oocytes and present supporting in silico and in vitro evidence suggesting that GHR1 is an inactive pseudokinase. Biochemical analyses suggested that GHR1-mediated activation of SLAC1 occurs via interacting proteins and that CALCIUM-DEPENDENT PROTEIN KINASE3 interacts with GHR1. We propose that GHR1 acts in stomatal closure as a scaffolding component.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Plant Stomata/metabolism , Plant Stomata/physiology , Protein Kinases/metabolism , Arabidopsis Proteins/genetics , Carbon Dioxide/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphorylation/genetics , Phosphorylation/physiology , Protein Binding , Signal Transduction/genetics , Signal Transduction/physiology
6.
Plant Physiol ; 171(3): 1569-80, 2016 07.
Article in English | MEDLINE | ID: mdl-27208297

ABSTRACT

Guard cells form stomatal pores that optimize photosynthetic carbon dioxide uptake with minimal water loss. Stomatal movements are controlled by complex signaling networks that respond to environmental and endogenous signals. Regulation of stomatal aperture requires coordinated activity of reactive oxygen species (ROS)-generating enzymes, signaling proteins, and downstream executors such as ion pumps, transporters, and plasma membrane channels that control guard cell turgor pressure. Accumulation of ROS in the apoplast and chloroplasts is among the earliest hallmarks of stomatal closure. Subsequent increase in cytoplasmic Ca(2+) concentration governs the activity of multiple kinases that regulate the activity of ROS-producing enzymes and ion channels. In parallel, ROS directly regulate the activity of multiple proteins via oxidative posttranslational modifications to fine-tune guard cell signaling. In this review, we summarize recent advances in the role of ROS in stomatal closure and discuss the importance of ROS in regulation of signal amplification and specificity in guard cells.


Subject(s)
Plant Stomata/metabolism , Reactive Oxygen Species/metabolism , Abscisic Acid/metabolism , Calcium/metabolism , NADPH Oxidases/metabolism , Phosphorylation , Plant Cells/metabolism , Plant Proteins/metabolism , Plant Stomata/physiology , Signal Transduction
7.
Plant Signal Behav ; 6(2): 311-3, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21350338

ABSTRACT

Stomatal pores, surrounded by the pairs of guard cells, regulate plant gas exchange. Correct stomatal regulation is crucial for plant survival under various stress conditions. We have recently utilized the air pollutant ozone (O3) to study stomatal signaling and showed that application of O3 induces rapid decrease in stomatal conductance. Here we have addressed the recovery of stomatal conductance and show that after exposures of plants to high O3 pulses stomatal conductance recovered faster, reaching higher, "overshooting" values than were the pre-exposure values. We propose the hypothetical mechanism for this phenomenon and discuss it in the frames of current stomatal signaling models.


Subject(s)
Air Pollutants/analysis , Arabidopsis/physiology , Ozone/analysis , Plant Stomata/physiology
8.
Plant J ; 62(3): 442-53, 2010 May.
Article in English | MEDLINE | ID: mdl-20128877

ABSTRACT

The air pollutant ozone can be used as a tool to unravel in planta processes induced by reactive oxygen species (ROS). Here, we have utilized ozone to study ROS-dependent stomatal signaling. We show that the ozone-triggered rapid transient decrease (RTD) in stomatal conductance coincided with a burst of ROS in guard cells. RTD was present in 11 different Arabidopsis ecotypes, suggesting that it is a genetically robust response. To study which signaling components or ion channels were involved in RTD, we tested 44 mutants deficient in various aspects of stomatal function. This revealed that the SLAC1 protein, essential for guard cell plasma membrane S-type anion channel function, and the protein kinase OST1 were required for the ROS-induced fast stomatal closure. We showed a physical interaction between OST1 and SLAC1, and provide evidence that SLAC1 is phosphorylated by OST1. Phosphoproteomic experiments indicated that OST1 phosphorylated multiple amino acids in the N terminus of SLAC1. Using TILLING we identified three new slac1 alleles where predicted phosphosites were mutated. The lack of RTD in two of them, slac1-7 (S120F) and slac1-8 (S146F), suggested that these serine residues were important for the activation of SLAC1. Mass-spectrometry analysis combined with site-directed mutagenesis and phosphorylation assays, however, showed that only S120 was a specific phosphorylation site for OST1. The absence of the RTD in the dominant-negative mutants abi1-1 and abi2-1 also suggested a regulatory role for the protein phosphatases ABI1 and ABI2 in the ROS-induced activation of the S-type anion channel.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Membrane Proteins/metabolism , Ozone/pharmacology , Plant Stomata/physiology , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Membrane Proteins/genetics , Mutagenesis, Site-Directed , Phosphorylation , Protein Kinases/genetics
9.
Nature ; 452(7186): 487-91, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18305484

ABSTRACT

Stomatal pores, formed by two surrounding guard cells in the epidermis of plant leaves, allow influx of atmospheric carbon dioxide in exchange for transpirational water loss. Stomata also restrict the entry of ozone--an important air pollutant that has an increasingly negative impact on crop yields, and thus global carbon fixation and climate change. The aperture of stomatal pores is regulated by the transport of osmotically active ions and metabolites across guard cell membranes. Despite the vital role of guard cells in controlling plant water loss, ozone sensitivity and CO2 supply, the genes encoding some of the main regulators of stomatal movements remain unknown. It has been proposed that guard cell anion channels function as important regulators of stomatal closure and are essential in mediating stomatal responses to physiological and stress stimuli. However, the genes encoding membrane proteins that mediate guard cell anion efflux have not yet been identified. Here we report the mapping and characterization of an ozone-sensitive Arabidopsis thaliana mutant, slac1. We show that SLAC1 (SLOW ANION CHANNEL-ASSOCIATED 1) is preferentially expressed in guard cells and encodes a distant homologue of fungal and bacterial dicarboxylate/malic acid transport proteins. The plasma membrane protein SLAC1 is essential for stomatal closure in response to CO2, abscisic acid, ozone, light/dark transitions, humidity change, calcium ions, hydrogen peroxide and nitric oxide. Mutations in SLAC1 impair slow (S-type) anion channel currents that are activated by cytosolic Ca2+ and abscisic acid, but do not affect rapid (R-type) anion channel currents or Ca2+ channel function. A low homology of SLAC1 to bacterial and fungal organic acid transport proteins, and the permeability of S-type anion channels to malate suggest a vital role for SLAC1 in the function of S-type anion channels.


Subject(s)
Anions/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Ion Channels/metabolism , Membrane Proteins/metabolism , Plant Stomata/metabolism , Signal Transduction , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Animals , Arabidopsis/drug effects , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Calcium/metabolism , Calcium/pharmacology , Darkness , Environment , Humidity , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Ion Channel Gating/drug effects , Ion Channel Gating/radiation effects , Ion Transport/drug effects , Ion Transport/radiation effects , Light , Membrane Proteins/genetics , Nitric Oxide/metabolism , Onions/metabolism , Oocytes , Ozone/metabolism , Ozone/pharmacology , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Stomata/drug effects , Plant Stomata/radiation effects , Signal Transduction/drug effects , Signal Transduction/radiation effects , Nicotiana/cytology , Nicotiana/metabolism , Water/metabolism , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...