Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 14(12): 2819-32, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26997270

ABSTRACT

Thymic epithelial cells (TECs) are critically required for T cell development, but the cellular mechanisms that maintain adult TECs are poorly understood. Here, we show that a previously unidentified subpopulation, EpCam(+)UEA1(-)Ly-51(+)PLET1(+)MHC class II(hi), which comprises <0.5% of adult TECs, contains bipotent TEC progenitors that can efficiently generate both cortical (c) TECs and medullary (m) TECs. No other adult TEC population tested in this study contains this activity. We demonstrate persistence of PLET1(+)Ly-51(+) TEC-derived cells for 9 months in vivo, suggesting the presence of thymic epithelial stem cells. Additionally, we identify cTEC-restricted short-term progenitor activity but fail to detect high efficiency mTEC-restricted progenitors in the adult thymus. Our data provide a phenotypically defined adult thymic epithelial progenitor/stem cell that is able to generate both cTECs and mTECs, opening avenues for improving thymus function in patients.


Subject(s)
Stem Cells/metabolism , Thymus Gland/cytology , Animals , Female , Flow Cytometry , Humans , Immunohistochemistry , Immunophenotyping , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Phenotype , Pregnancy Proteins/metabolism , Real-Time Polymerase Chain Reaction , Stem Cells/cytology , Transcriptome
2.
PLoS One ; 11(3): e0151666, 2016.
Article in English | MEDLINE | ID: mdl-26983083

ABSTRACT

Thymus function requires extensive cross-talk between developing T-cells and the thymic epithelium, which consists of cortical and medullary TEC. The transcription factor FOXN1 is the master regulator of TEC differentiation and function, and declining Foxn1 expression with age results in stereotypical thymic involution. Understanding of the dynamics of Foxn1 expression is, however, limited by a lack of single cell resolution data. We have generated a novel reporter of Foxn1 expression, Foxn1G, to monitor changes in Foxn1 expression during embryogenesis and involution. Our data reveal that early differentiation and maturation of cortical and medullary TEC coincides with precise sub-lineage-specific regulation of Foxn1 expression levels. We further show that initiation of thymic involution is associated with reduced cTEC functionality, and proportional expansion of FOXN1-negative TEC in both cortical and medullary sub-lineages. Cortex-specific down-regulation of Foxn1 between 1 and 3 months of age may therefore be a key driver of the early stages of age-related thymic involution.


Subject(s)
Cell Differentiation/physiology , Embryonic Development/physiology , Epithelial Cells/metabolism , Forkhead Transcription Factors/metabolism , Thymus Gland/metabolism , Aging/physiology , Animals , Cell Lineage/physiology , Down-Regulation , Forkhead Transcription Factors/genetics , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...