Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 14: 599010, 2020.
Article in English | MEDLINE | ID: mdl-33328870

ABSTRACT

Recent studies have shown the ability to record high-γ signals (80-160 Hz) in electroencephalogram (EEG) from traumatic brain injury (TBI) patients who have had hemicraniectomies. However, extraction of the movement-related high-γ remains challenging due to a confounding bandwidth overlap with surface electromyogram (EMG) artifacts related to facial and head movements. In our previous work, we described an augmented independent component analysis (ICA) approach for removal of EMG artifacts from EEG, and referred to as EMG Reduction by Adding Sources of EMG (ERASE). Here, we tested this algorithm on EEG recorded from six TBI patients with hemicraniectomies while they performed a thumb flexion task. ERASE removed a mean of 52 ± 12% (mean ± S.E.M) (maximum 73%) of EMG artifacts. In contrast, conventional ICA removed a mean of 27 ± 19% (mean ± S.E.M) of EMG artifacts from EEG. In particular, high-γ synchronization was significantly improved in the contralateral hand motor cortex area within the hemicraniectomy site after ERASE was applied. A more sophisticated measure of high-γ complexity is the fractal dimension (FD). Here, we computed the FD of EEG high-γ on each channel. Relative FD of high-γ was defined as that the FD in move state was subtracted by FD in idle state. We found relative FD of high-γ over hemicraniectomy after applying ERASE were strongly correlated to the amplitude of finger flexion force. Results showed that significant correlation coefficients across the electrodes related to thumb flexion averaged ~0.76, while the coefficients across the homologous electrodes in non-hemicraniectomy areas were nearly 0. After conventional ICA, a correlation between relative FD of high-γ and force remained high in both hemicraniectomy areas (up to 0.86) and non-hemicraniectomy areas (up to 0.81). Across all subjects, an average of 83% of electrodes significantly correlated with force was located in the hemicraniectomy areas after applying ERASE. After conventional ICA, only 19% of electrodes with significant correlations were located in the hemicraniectomy. These results indicated that the new approach isolated electrophysiological features during finger motor activation while selectively removing confounding EMG artifacts. This approach removed EMG artifacts that can contaminate high-gamma activity recorded over the hemicraniectomy.

2.
Front Neurosci ; 14: 597941, 2020.
Article in English | MEDLINE | ID: mdl-33584176

ABSTRACT

Electroencephalographic (EEG) recordings are often contaminated by electromyographic (EMG) artifacts, especially when recording during movement. Existing methods to remove EMG artifacts include independent component analysis (ICA), and other high-order statistical methods. However, these methods can not effectively remove most of EMG artifacts. Here, we proposed a modified ICA model for EMG artifacts removal in the EEG, which is called EMG Removal by Adding Sources of EMG (ERASE). In this new approach, additional channels of real EMG from neck and head muscles (reference artifacts) were added as inputs to ICA in order to "force" the most power from EMG artifacts into a few independent components (ICs). The ICs containing EMG artifacts (the "artifact ICs") were identified and rejected using an automated procedure. ERASE was validated first using both simulated and experimentally-recorded EEG and EMG. Simulation results showed ERASE removed EMG artifacts from EEG significantly more effectively than conventional ICA. Also, it had a low false positive rate and high sensitivity. Subsequently, EEG was collected from 8 healthy participants while they moved their hands to test the realistic efficacy of this approach. Results showed that ERASE successfully removed EMG artifacts (on average, about 75% of EMG artifacts were removed when using real EMGs as reference artifacts) while preserving the expected EEG features related to movement. We also tested the ERASE procedure using simulated EMGs as reference artifacts (about 63% of EMG artifacts removed). Compared to conventional ICA, ERASE removed on average 26% more EMG artifacts from EEG. These findings suggest that ERASE can achieve significant separation of EEG signal and EMG artifacts without a loss of the underlying EEG features. These results indicate that using additional real or simulated EMG sources can increase the effectiveness of ICA in removing EMG artifacts from EEG. Combined with automated artifact IC rejection, ERASE also minimizes potential user bias. Future work will focus on improving ERASE so that it can also be used in real-time applications.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 6014-6017, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441707

ABSTRACT

In recent years, many studies examined if EEG signals from traumatic brain injury (TBI) patients can be used for new rehabilitation technologies, such as BCI systems. However, extraction of the high-gamma band related to movement remains challenging due to the presence of surface electromyogram (sEMG) caused by unconscious facial and head movement of patients. In this paper, we proposed a modified independent component analysis (ICA) model for EMG artifact removal in the EEG data from TBI patients with a hemicraniectomy. Here, simulated EMG was generated and added to the raw EEG data as the extra channels for independent components calculation. After running ICA, the independent components (ICs) related to artifacts were identified and rejected automatically through several criteria. EEG data underlying hand movement from one healthy subject and one TBI patient with a hemicraniectomy were conducted to verify the efficacy of this algorithm. Results showed that the proposed algorithm removed sEMG artifacts from the EEG data by up to 86.72% while preserving the associated brain features. In particular, the high-gamma band (80 to 160 Hz) was found to arise principally from the hemicraniectomy area after this technique was applied. Meanwhile, we found that the magnitude of gamma power during movement improved after removal of sEMG artifacts.


Subject(s)
Algorithms , Artifacts , Electroencephalography , Signal Processing, Computer-Assisted , Brain , Brain Injuries, Traumatic , Electromyography , Hand , Humans , Movement
SELECTION OF CITATIONS
SEARCH DETAIL
...