Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
ERJ Open Res ; 7(4)2021 Oct.
Article in English | MEDLINE | ID: mdl-34651041

ABSTRACT

Currently available noninvasive markers for assessing disease severity and mortality risk in pulmonary arterial hypertension (PAH) are unrelated to fundamental disease biology. Endostatin, an angiostatic peptide known to inhibit pulmonary artery endothelial cell migration, proliferation and survival in vitro, has been linked to adverse haemodynamics and shortened survival in small PAH cohorts. This observational cohort study sought to assess: 1) the prognostic performance of circulating endostatin levels in a large, multicentre PAH cohort; and 2) the added value gained by incorporating endostatin into existing PAH risk prediction models. Endostatin ELISAs were performed on enrolment samples collected from 2017 PAH subjects with detailed clinical data, including survival times. Endostatin associations with clinical variables, including survival, were examined using multivariable regression and Cox proportional hazards models. Extended survival models including endostatin were compared to null models based on the REVEAL risk prediction tool and European Society of Cardiology/European Respiratory Society (ESC/ERS) low-risk criteria using likelihood ratio tests, Akaike and Bayesian information criteria and C-statistics. Higher endostatin was associated with higher right atrial pressure, mean pulmonary arterial pressure and pulmonary vascular resistance, and with shorter 6-min walk distance (p<0.01). Mortality risk doubled for each log higher endostatin (hazard ratio 2.3, 95% CI 1.6-3.4, p<0.001). Endostatin remained an independent predictor of survival when incorporated into existing risk prediction models. Adding endostatin to REVEAL-based and ESC/ERS criteria-based risk assessment strategies improved mortality risk prediction. Endostatin is a robust, independent predictor of mortality in PAH. Adding endostatin to existing PAH risk prediction strategies improves PAH risk assessment.

2.
J Am Heart Assoc ; 10(20): e021409, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34622662

ABSTRACT

Background Endostatin, an angiogenic inhibitor, is associated with worse pulmonary arterial hypertension (PAH) outcomes in adults and poor lung growth in children. This study sought to assess whether endostatin is associated with disease severity and outcomes in pediatric PAH. Methods and Results Serum endostatin was measured in cross-sectional (N=160) and longitudinal cohorts (N=64) of pediatric subjects with PAH, healthy pediatric controls and pediatric controls with congenital heart disease (CHD) (N=54, N=15), and adults with CHD associated PAH (APAH-CHD, N=185). Outcomes, assessed by regression and Kaplan-Meier analysis, included hemodynamics, change in endostatin over time, and transplant-free survival. Endostatin secretion was evaluated in pulmonary artery endothelial and smooth muscle cells. Endostatin was higher in those with PAH compared with healthy controls and controls with CHD and was highest in those with APAH-CHD. In APAH-CHD, endostatin was associated with a shorter 6-minute walk distance and increased mean right atrial pressure. Over time, endostatin was associated with higher pulmonary artery pressure and pulmonary vascular resistance index, right ventricular dilation, and dysfunction. Endostatin decreased with improved hemodynamics over time. Endostatin was associated with worse transplant-free survival. Addition of endostatin to an NT-proBNP (N-terminal pro-B-type natriuretic peptide) based survival analysis improved risk stratification, reclassifying subjects with adverse outcomes. Endostatin was secreted primarily by pulmonary artery endothelial cells. Conclusions Endostatin is associated with disease severity, disease improvement, and worse survival in APAH-CHD. Endostatin with NT-proBNP improves risk stratification, better predicting adverse outcomes. The association of elevated endostatin with shunt lesions suggests that endostatin could be driven by both pulmonary artery flow and pressure. Endostatin could be studied as a noninvasive prognostic marker, particularly in APAH-CHD.


Subject(s)
Angiostatic Proteins , Heart Defects, Congenital , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Biomarkers , Child , Cross-Sectional Studies , Endostatins , Endothelial Cells , Familial Primary Pulmonary Hypertension , Heart Defects, Congenital/complications , Heart Defects, Congenital/diagnosis , Humans , Hypertension, Pulmonary/diagnosis
3.
J Pediatr ; 223: 164-169.e1, 2020 08.
Article in English | MEDLINE | ID: mdl-32711743

ABSTRACT

OBJECTIVE: To assess whether circulating interleukin-6 (IL-6) is associated with measures of disease severity and clinical worsening in pediatric pulmonary arterial hypertension (PAH). STUDY DESIGN: IL-6 was measured by enzyme-linked immunosorbent assay in serum samples from a cross-sectional cohort from the National Heart, Lung, and Blood Institute Pulmonary Arterial Hypertension Biobank (n = 175) and a longitudinal cohort from Children's Hospital Colorado (CHC) (n = 61). Associations between IL-6, disease severity, and outcomes were studied with regression and Kaplan-Meier analysis. RESULTS: In analyses adjusted for age and sex, each log-unit greater IL-6 was significantly associated in the Pulmonary Arterial Hypertension Biobank cohort with greater pulmonary vascular resistance indices, lower odds of having idiopathic PAH or treatment with prostacyclin, and greater odds of having PAH associated with a repaired congenital shunt. In the CHC cohort, each log-unit greater IL-6 was significantly associated with greater mean pulmonary arterial pressure over time. Kaplan-Meier analysis in the CHC cohort revealed that IL-6 was significantly associated with clinical worsening (a composite score of mortality, transplant, or palliative surgery) (P = .037). CONCLUSIONS: IL-6 was significantly associated with worse hemodynamics at baseline and over time and may be associated with clinical worsening. IL-6 may provide a less-invasive method for disease monitoring and prognosis in pediatric PAH as well as a potential therapeutic target.


Subject(s)
Interleukin-6/blood , Pulmonary Arterial Hypertension/blood , Adolescent , Biomarkers/blood , Child , Child, Preschool , Cross-Sectional Studies , Disease Progression , Enzyme-Linked Immunosorbent Assay , Female , Follow-Up Studies , Humans , Male , Prognosis , Pulmonary Wedge Pressure/physiology
4.
Eur Respir J ; 55(4)2020 04.
Article in English | MEDLINE | ID: mdl-32029443

ABSTRACT

The pro-inflammatory cytokine interleukin (IL)-6 has been associated with outcomes in small pulmonary arterial hypertension (PAH) cohorts composed largely of patients with severe idiopathic PAH (IPAH). It is unclear whether IL-6 is a marker of critical illness or a mechanistic biomarker of pulmonary vascular remodelling. We hypothesised that IL-6 is produced by pulmonary vascular cells and sought to explore IL-6 associations with phenotypes and outcomes across diverse subtypes in a large PAH cohort.IL-6 protein and gene expression levels were measured in cultured pulmonary artery smooth muscle cells (PASMCs) and endothelial cells (PAECs) from PAH patients and healthy controls. Serum IL-6 was measured in 2017 well-characterised PAH subjects representing each PAH subgroup. Relationships between IL-6 levels, clinical variables, and mortality were analysed using regression models.Significantly higher IL-6 protein and gene expression levels were produced by PASMCs than by PAECs in PAH (p<0.001), while there was no difference in IL-6 between cell types in controls. Serum IL-6 was highest in PAH related to portal hypertension and connective tissue diseases (CTD-PAH). In multivariable modelling, serum IL-6 was associated with survival in the overall cohort (hazard ratio 1.22, 95% CI 1.08-1.38; p<0.01) and in IPAH, but not in CTD-PAH. IL-6 remained associated with survival in low-risk subgroups of subjects with mild disease.IL-6 is released from PASMCs, and circulating IL-6 is associated with specific clinical phenotypes and outcomes in various PAH subgroups, including subjects with less severe disease. IL-6 is a mechanistic biomarker, and thus a potential therapeutic target, in certain PAH subgroups.


Subject(s)
Interleukin-6/genetics , Pulmonary Arterial Hypertension/genetics , Endothelial Cells , Humans , Myocytes, Smooth Muscle , Phenotype , Pulmonary Artery
5.
Chest ; 157(6): 1606-1616, 2020 06.
Article in English | MEDLINE | ID: mdl-31987881

ABSTRACT

BACKGROUND: Three biomarkers, soluble suppression of tumorigenicity 2 (ST2), galectin 3 (Gal3), and N-terminal brain natriuretic peptide prohormone (NT-proBNP), are approved for noninvasive risk assessment in left-sided heart failure, and small observational studies have shown their prognostic usefulness in heterogeneous pulmonary hypertension cohorts. We examined associations between these biomarkers and disease severity and survival in a large cohort of patients with pulmonary arterial hypertension (PAH) (ie, group 1 pulmonary hypertension). We hypothesized that additive use of biomarkers in combination would improve the prognostic value of survival models. METHODS: Biomarker measurements and clinical data were obtained from 2,017 adults with group 1 PAH. Associations among biomarker levels and clinical variables, including survival times, were examined with multivariable regression models. Likelihood ratio tests and the Akaike information criterion were used to compare survival models. RESULTS: Higher ST2 and NT-proBNP were associated with higher pulmonary pressures and vascular resistance and lower 6-min walk distance. Higher ST2 and NT-proBNP levels were associated with increased risk of death (hazard ratios: 2.79; 95% CI, 2.21-3.53; P < .001 and 1.84; 95% CI, 1.62-2.10; P < .001, respectively). The addition of ST2 to survival models composed of other predictors of survival, including NT-proBNP, significantly improved model fit and predictive capacity. CONCLUSIONS: ST2 and NT-proBNP are strong, noninvasive prognostic biomarkers in PAH. Despite its prognostic value in left-sided heart failure, Gal3 was not predictive in PAH. Adding ST2 to survival models significantly improves model predictive capacity. Future studies are needed to develop multimarker assays that improve noninvasive risk stratification in PAH.


Subject(s)
Heart Failure/complications , Interleukin-1 Receptor-Like 1 Protein/blood , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Pulmonary Arterial Hypertension/blood , Ventricular Function, Left/physiology , Biomarkers/blood , Enzyme-Linked Immunosorbent Assay , Female , Heart Failure/blood , Heart Failure/physiopathology , Humans , Male , Middle Aged , Prognosis , Protein Precursors , Pulmonary Arterial Hypertension/etiology , Pulmonary Arterial Hypertension/mortality , Risk Factors , Stroke Volume/physiology , Survival Rate/trends , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...