Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 97(7): e0065223, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37310263

ABSTRACT

HIV-1 (HIV) infects CD4+ T cells, the gradual depletion of which can lead to AIDS in the absence of antiretroviral therapy (ART). Some cells, however, survive HIV infection and persist as part of the latently infected reservoir that causes recurrent viremia after ART cessation. Improved understanding of the mechanisms of HIV-mediated cell death could lead to a way to clear the latent reservoir. Death induced by survival gene elimination (DISE), an RNA interference (RNAi)-based mechanism, kills cells through short RNAs (sRNAs) with toxic 6-mer seeds (positions 2 to 7 of sRNA). These toxic seeds target the 3' untranslated region (UTR) of mRNAs, decreasing the expression of hundreds of genes critical for cell survival. In most cells under normal conditions, highly expressed cell-encoded nontoxic microRNAs (miRNAs) block access of toxic sRNAs to the RNA-induced silencing complex (RISC) that mediates RNAi, promoting cell survival. HIV has been shown to inhibit the biogenesis of host miRNAs in multiple ways. We now report that HIV infection of cells deficient in miRNA expression or function results in enhanced RISC loading of an HIV-encoded miRNA HIV-miR-TAR-3p, which can kill cells by DISE through a noncanonical (positions 3 to 8) 6-mer seed. In addition, cellular RISC-bound sRNAs shift to lower seed viability. This also occurs after latent HIV provirus reactivation in J-Lat cells, suggesting independence of permissiveness of cells to viral infection. More precise targeting of the balance between protective and cytotoxic sRNAs could provide new avenues to explore novel cell death mechanisms that could be used to kill latent HIV. IMPORTANCE Several mechanisms by which initial HIV infection is cytotoxic to infected cells have been reported and involve various forms of cell death. Characterizing the mechanisms underlying the long-term survival of certain T cells that become persistent provirus reservoirs is critical to developing a cure. We recently discovered death induced by survival gene elimination (DISE), an RNAi-based mechanism of cell death whereby toxic short RNAs (sRNAs) containing 6-mer seed sequences (exerting 6-mer seed toxicity) targeting essential survival genes are loaded into RNA-induced silencing complex (RISC) complexes, resulting in inescapable cell death. We now report that HIV infection in cells with low miRNA expression causes a shift of mostly cellular RISC-bound sRNAs to more toxic seeds. This could prime cells to DISE and is further enhanced by the viral microRNA (miRNA) HIV-miR-TAR-3p, which carries a toxic noncanonical 6-mer seed. Our data provide multiple new avenues to explore novel cell death mechanisms that could be used to kill latent HIV.


Subject(s)
HIV Infections , HIV-1 , MicroRNAs , Humans , HIV-1/physiology , Virus Latency/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA-Induced Silencing Complex/metabolism
2.
PLoS Comput Biol ; 18(3): e1010022, 2022 03.
Article in English | MEDLINE | ID: mdl-35358200

ABSTRACT

microRNAs (miRNAs) are (18-22nt long) noncoding short (s)RNAs that suppress gene expression by targeting the 3' untranslated region of target mRNAs. This occurs through the seed sequence located in position 2-7/8 of the miRNA guide strand, once it is loaded into the RNA induced silencing complex (RISC). G-rich 6mer seed sequences can kill cells by targeting C-rich 6mer seed matches located in genes that are critical for cell survival. This results in induction of Death Induced by Survival gene Elimination (DISE), through a mechanism we have called 6mer seed toxicity. miRNAs are often quantified in cells by aligning the reads from small (sm)RNA sequencing to the genome. However, the analysis of any smRNA Seq data set for predicted 6mer seed toxicity requires an alternative workflow, solely based on the exact position 2-7 of any short (s)RNA that can enter the RISC. Therefore, we developed SPOROS, a semi-automated pipeline that produces multiple useful outputs to predict and compare 6mer seed toxicity of cellular sRNAs, regardless of their nature, between different samples. We provide two examples to illustrate the capabilities of SPOROS: Example one involves the analysis of RISC-bound sRNAs in a cancer cell line (either wild-type or two mutant lines unable to produce most miRNAs). Example two is based on a publicly available smRNA Seq data set from postmortem brains (either from normal or Alzheimer's patients). Our methods (found at https://github.com/ebartom/SPOROS and at Code Ocean: https://doi.org/10.24433/CO.1732496.v1) are designed to be used to analyze a variety of smRNA Seq data in various normal and disease settings.


Subject(s)
MicroRNAs , 3' Untranslated Regions , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , Seeds/genetics , Sequence Analysis, RNA/methods
3.
J Exp Clin Cancer Res ; 40(1): 389, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34893072

ABSTRACT

micro(mi)RNAs are short noncoding RNAs that through their seed sequence (pos. 2-7/8 of the guide strand) regulate cell function by targeting complementary sequences (seed matches) located mostly in the 3' untranslated region (3' UTR) of mRNAs. Any short RNA that enters the RNA induced silencing complex (RISC) can kill cells through miRNA-like RNA interference when its 6mer seed sequence (pos. 2-7 of the guide strand) has a G-rich nucleotide composition. G-rich seeds mediate 6mer Seed Toxicity by targeting C-rich seed matches in the 3' UTR of genes critical for cell survival. The resulting Death Induced by Survival gene Elimination (DISE) predominantly affects cancer cells but may contribute to cell death in other disease contexts. This review summarizes recent findings on the role of DISE/6mer Seed Tox in cancer; its therapeutic potential; its contribution to therapy resistance; its selectivity, and why normal cells are protected. In addition, we explore the connection between 6mer Seed Toxicity and aging in relation to cancer and certain neurodegenerative diseases.


Subject(s)
DEAD-box RNA Helicases/metabolism , Neoplasms/drug therapy , RNA Interference/immunology , Ribonuclease III/metabolism , Seeds/chemistry , Animals , Cell Death , Humans
4.
Oncotarget ; 9(98): 37080-37096, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30647846

ABSTRACT

Niraparib is an orally bioavailable and selective poly (ADP-ribose) polymerase (PARP)-1/-2 inhibitor approved for maintenance treatment of both BRCA mutant (mut) and BRCA wildtype (wt) adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancers who have demonstrated a complete or partial response to platinum-based chemotherapy. In patients without germline BRCA mutations (non-gBRCAmut), niraparib improved progression-free survival (PFS) by 5.4 months, whereas another PARP inhibitor (PARPi) olaparib supplied only 1.9 months of improvement in a similar patient population. Previous studies revealed higher cell membrane permeability and volume of distribution (VD) as unique features of niraparib in comparison to other PARPi including olaparib. Here, we explore the potential correlation of these pharmacokinetic properties to preclinical antitumor effects in BRCAwt tumors. Our results show that at steady state, tumor exposure to niraparib is 3.3 times greater than plasma exposure in tumor xenograft mouse models. In comparison, the tumor exposure to olaparib is less than observed in plasma. In addition, niraparib crosses the blood-brain barrier and shows good sustainability in the brain, whereas sustained brain exposure to olaparib is not observed in the same models. Consistent with its favorable tumor and brain distribution, niraparib achieves more potent tumor growth inhibition than olaparib in BRCAwt models and an intracranial tumor model at maximum tolerated doses (MTD). These findings demonstrate favorable pharmacokinetic profiles and potent antitumor effects of niraparib in BRCAwt tumors, consistent with its broader clinical effect in patients with both BRCAmut and BRCAwt tumors.

5.
Br J Cancer ; 115(4): 431-41, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27415012

ABSTRACT

BACKGROUND: Clinical response to chemotherapy for ovarian cancer is frequently compromised by the development of drug-resistant disease. The underlying molecular mechanisms and implications for prescription of routinely prescribed chemotherapy drugs are poorly understood. METHODS: We created novel A2780-derived ovarian cancer cell lines resistant to paclitaxel and olaparib following continuous incremental drug selection. MTT assays were used to assess chemosensitivity to paclitaxel and olaparib in drug-sensitive and drug-resistant cells±the ABCB1 inhibitors verapamil and elacridar and cross-resistance to cisplatin, carboplatin, doxorubicin, rucaparib, veliparib and AZD2461. ABCB1 expression was assessed by qRT-PCR, copy number, western blotting and immunohistochemical analysis and ABCB1 activity assessed by the Vybrant and P-glycoprotein-Glo assays. RESULTS: Paclitaxel-resistant cells were cross-resistant to olaparib, doxorubicin and rucaparib but not to veliparib or AZD2461. Resistance correlated with increased ABCB1 expression and was reversible following treatment with the ABCB1 inhibitors verapamil and elacridar. Active efflux of paclitaxel, olaparib, doxorubicin and rucaparib was confirmed in drug-resistant cells and in ABCB1-expressing bacterial membranes. CONCLUSIONS: We describe a common ABCB1-mediated mechanism of paclitaxel and olaparib resistance in ovarian cancer cells. Optimal choice of PARP inhibitor may therefore limit the progression of drug-resistant disease, while routine prescription of first-line paclitaxel may significantly limit subsequent chemotherapy options in ovarian cancer patients.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/genetics , Ovarian Neoplasms/drug therapy , Paclitaxel/therapeutic use , Phthalazines/therapeutic use , Piperazines/therapeutic use , RNA, Messenger/metabolism , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Acridines/pharmacology , Blotting, Western , Cell Line, Tumor , Female , Gene Knockdown Techniques , Humans , Immunohistochemistry , Reverse Transcriptase Polymerase Chain Reaction , Tetrahydroisoquinolines/pharmacology , Verapamil/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...