Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34518374

ABSTRACT

Most endangered species exist today in small populations, many of which are isolated. Evolution in such populations is largely governed by genetic drift. Empirical evidence for drift affecting striking phenotypes based on substantial genetic data are rare. Approximately 37% of tigers (Panthera tigris) in the Similipal Tiger Reserve (in eastern India) are pseudomelanistic, characterized by wide, merged stripes. Camera trap data across the tiger range revealed the presence of pseudomelanistic tigers only in Similipal. We investigated the genetic basis for pseudomelanism and examined the role of drift in driving this phenotype's frequency. Whole-genome data and pedigree-based association analyses from captive tigers revealed that pseudomelanism cosegregates with a conserved and functionally important coding alteration in Transmembrane Aminopeptidase Q (Taqpep), a gene responsible for similar traits in other felid species. Noninvasive sampling of tigers revealed a high frequency of the Taqpep p.H454Y mutation in Similipal (12 individuals, allele frequency = 0.58) and absence from all other tiger populations (395 individuals). Population genetic analyses confirmed few (minimal number) tigers in Similipal, and its genetic isolation, with poor geneflow. Pairwise FST (0.33) at the mutation site was high but not an outlier. Similipal tigers had low diversity at 81 single nucleotide polymorphisms (mean heterozygosity = 0.28, SD = 0.27). Simulations were consistent with founding events and drift as possible drivers for the observed stark difference of allele frequency. Our results highlight the role of stochastic processes in the evolution of rare phenotypes. We highlight an unusual evolutionary trajectory in a small and isolated population of an endangered species.


Subject(s)
Biological Evolution , Genetic Drift , Genetic Variation , Genetics, Population , Melanosis/genetics , Phenotype , Tigers/physiology , Amino Acid Sequence , Animals , Conservation of Natural Resources , Endangered Species , Genome , Genotype , India , Microsatellite Repeats , Sequence Homology , Tigers/genetics
2.
Sci Rep ; 9(1): 8678, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31273235

ABSTRACT

Male Asian elephants are known to adopt a high-risk high-gain foraging strategy by venturing into agricultural areas and feeding on nutritious crops in order to improve their reproductive fitness. We hypothesised that the high risks to survival posed by increasingly urbanising and often unpredictable production landscapes may necessitate the emergence of behavioural strategies that allow male elephants to persist in such landscapes. Using 1445 photographic records of 248 uniquely identified male Asian elephants over a 23-month period, we show that male Asian elephants display striking emergent behaviour, particularly the formation of stable, long-term all-male groups, typically in non-forested or human-modified and highly fragmented areas. They remained solitary or associated in mixed-sex groups, however, within forested habitats. These novel, large all-male associations, may constitute a unique life history strategy for male elephants in the high-risk but resource-rich production landscapes of southern India. This may be especially true for the adolescent males, which seemed to effectively improve their body condition by increasingly exploiting anthropogenic resources when in all-male groups. This observation further supports our hypothesis that such emergent behaviours are likely to constitute an adaptive strategy for male Asian elephants that may be forced to increasingly confront anthropogenically intrusive environments.


Subject(s)
Ecosystem , Elephants , Animals , Behavior, Animal , Body Size , Conservation of Natural Resources , Female , India , Male , Sex Factors
3.
Ecol Evol ; 8(15): 7312-7322, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30151151

ABSTRACT

When sighting-based surveys to estimate population densities of large herbivores in tropical dense forests are not practical or affordable, surveys that rely on animal dung are sometimes used. This study tested one such dung-based method by deriving population densities from observed dung densities of six large herbivores (chital, elephant, gaur, muntjac, sambar, and wild pig) in two habitats, dry deciduous forests (DDF) and moist deciduous forests (MDF), within Nagarahole National Park, southern India. Using the program DUNGSURV, dung pile counts, decay rates estimated from field experiments, and defecation rates derived from literature were analyzed together by a model that allows for random events affecting dung decay. Densities of chital were the highest, followed by sambar. Wild pig densities were similar in the two habitats, sambar densities were higher in DDF, and densities of the other species were higher in MDF than in DDF. We compared DUNGSURV estimates with densities estimated using distance sampling in the same season. DUNGSURV estimates were substantially higher for all species in both habitats. These differences highlight the challenges that researchers face in computing unbiased estimates of dung decay rates and in relying on defecation rates from literature. Besides the elephant, this study is the first to rigorously test the efficacy of using a dung-based approach to estimate densities of large herbivore species in Asia, and based on this evaluation, we provide specific recommendations to address issues that require careful consideration before observed dung densities are used to derive animal densities. Our results underline the need for an experimental study of a known population in a fenced reserve to validate the true potential of using dung-based approaches to estimate population densities.

4.
PLoS One ; 12(5): e0177013, 2017.
Article in English | MEDLINE | ID: mdl-28493999

ABSTRACT

There is increasing evidence of the importance of multi-use landscapes for the conservation of large carnivores. However, when carnivore ranges overlap with high density of humans, there are often serious conservation challenges. This is especially true in countries like India where loss of peoples' lives and property to large wildlife are not uncommon. The leopard (Panthera pardus) is a large felid that is widespread in India, often sharing landscapes with high human densities. In order to understand the ecology of leopards in a human use landscape and the nature of human-leopard interactions, we studied (i) the spatial and temporal distribution and the characteristics of leopard attacks on people, (ii) the spatial variability in the pattern of habitat use by the leopard, and (iii) the spatial relationship between attack locations and habitat use by leopards. The study site, located in northern West Bengal, India, is a densely populated mixed-use landscape of 630 km2, comprising of forests, tea plantations, agriculture fields, and human settlements. A total of 171 leopard attacks on humans were reported between January 2009 and March 2016, most of which occurred within the tea-gardens. None of the attacks was fatal. We found significant spatial clustering of locations of leopard attacks on humans. However, most of the attacks were restricted to certain tea estates and occurred mostly between January and May. Analysis of habitat use by leopards showed that the probability of use of areas with more ground vegetation cover was high while that of areas with high density of buildings was low. However, locations of leopard attacks on people did not coincide with areas that showed a higher probability of use by leopards. This indicates that an increased use of an area by leopards, by itself, does not necessarily imply an increase in attacks on people. The spatial and temporal clustering of attack locations allowed us to use this information to prioritize areas to focus mitigation activities in order reduce negative encounters between people and leopards in this landscape which has had a long history of conflict.


Subject(s)
Animal Distribution , Animals, Wild , Ecosystem , Panthera , Predatory Behavior , Animals , Animals, Wild/physiology , Conservation of Natural Resources , Female , Humans , India , Male , Panthera/physiology , Population Density
5.
PLoS One ; 8(11): e77980, 2013.
Article in English | MEDLINE | ID: mdl-24223132

ABSTRACT

Today, most wild tigers live in small, isolated Protected Areas within human dominated landscapes in the Indian subcontinent. Future survival of tigers depends on increasing local population size, as well as maintaining connectivity between populations. While significant conservation effort has been invested in increasing tiger population size, few initiatives have focused on landscape-level connectivity and on understanding the effect different landscape elements have on maintaining connectivity. We combined individual-based genetic and landscape ecology approaches to address this issue in six protected areas with varying tiger densities and separation in the Central Indian tiger landscape. We non-invasively sampled 55 tigers from different protected areas within this landscape. Maximum-likelihood and Bayesian genetic assignment tests indicate long-range tiger dispersal (on the order of 650 km) between protected areas. Further geo-spatial analyses revealed that tiger connectivity was affected by landscape elements such as human settlements, road density and host-population tiger density, but not by distance between populations. Our results elucidate the importance of landscape and habitat viability outside and between protected areas and provide a quantitative approach to test functionality of tiger corridors. We suggest future management strategies aim to minimize urban expansion between protected areas to maximize tiger connectivity. Achieving this goal in the context of ongoing urbanization and need to sustain current economic growth exerts enormous pressure on the remaining tiger habitats and emerges as a big challenge to conserve wild tigers in the Indian subcontinent.


Subject(s)
Ecosystem , Tigers/genetics , Animal Distribution , Animals , Bayes Theorem , Conservation of Natural Resources , Humans , India , Likelihood Functions , Male , Polymorphism, Genetic , Population Density , Trees
6.
PLoS One ; 7(8): e42571, 2012.
Article in English | MEDLINE | ID: mdl-22916135

ABSTRACT

BACKGROUND: A dearth in understanding the behavior of Asian elephants (Elephas maximus) at the scale of populations and individuals has left important management issues, particularly related to human-elephant conflict (HEC), unresolved. Evaluation of differences in behavior and decision-making among individual elephants across groups in response to changing local ecological settings is essential to fill this gap in knowledge and to improve our approaches towards the management and conservation of elephants. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesized certain behavioral decisions that would be made by Asian elephants as reflected in their residence time and movement rates, time-activity budgets, social interactions and group dynamics in response to resource availability and human disturbance in their habitat. This study is based on 200 h of behavioral observations on 60 individually identified elephants and a 184-km(2) grid-based survey of their natural and anthropogenic habitats within and outside the Bannerghatta National Park, southern India during the dry season. At a general population level, the behavioral decisions appeared to be guided by the gender, age and group-type of the elephants. At the individual level, the observed variation could be explained only by the idiosyncratic behaviors of individuals and that of their associating conspecific individuals. Recursive partitioning classification trees for residence time of individual elephants indicated that the primary decisions were taken by individuals, independently of their above-mentioned biological and ecological attributes. CONCLUSIONS/SIGNIFICANCE: Decision-making by Asian elephants thus appears to be determined at two levels, that of the population and, more importantly, the individual. Models based on decision-making by individual elephants have the potential to predict conflict in fragmented landscapes that, in turn, could aid in mitigating HEC. Thus, we must target individuals, in addition to populations, in our efforts to manage and conserve this threatened species, particularly in human-dominated landscapes.


Subject(s)
Behavior, Animal , Conservation of Natural Resources , Elephants/physiology , Animals , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...