Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(26): 9892-9900, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37336762

ABSTRACT

We present a chip-based extended nano-Coulter counter (XnCC) that can detect nanoparticles affinity-selected from biological samples with low concentration limit-of-detection that surpasses existing resistive pulse sensors by 2-3 orders of magnitude. The XnCC was engineered to contain 5 in-plane pores each with an effective diameter of 350 nm placed in parallel and can provide high detection efficiency for single particles translocating both hydrodynamically and electrokinetically through these pores. The XnCC was fabricated in cyclic olefin polymer (COP) via nanoinjection molding to allow for high-scale production. The concentration limit-of-detection of the XnCC was 5.5 × 103 particles/mL, which was a 1,100-fold improvement compared to a single in-plane pore device. The application examples of the XnCC included counting affinity selected SARS-CoV-2 viral particles from saliva samples using an aptamer and pillared microchip; the selection/XnCC assay could distinguish the COVID-19(+) saliva samples from those that were COVID-19(-). In the second example, ovarian cancer extracellular vesicles (EVs) were affinity selected using a pillared chip modified with a MUC16 monoclonal antibody. The affinity selection chip coupled with the XnCC was successful in discriminating between patients with high grade serous ovarian cancer and healthy donors using blood plasma as the input sample.


Subject(s)
COVID-19 , Extracellular Vesicles , Nanoparticles , Humans , COVID-19/diagnosis , SARS-CoV-2 , Virion
2.
Sci Adv ; 8(39): eabn9665, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36170362

ABSTRACT

We report a microfluidic assay to select active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral particles (VPs), which were defined as intact particles with an accessible angiotensin-converting enzyme 2 receptor binding domain (RBD) on the spike (S) protein, from clinical samples. Affinity selection of SARS-CoV-2 particles was carried out using injection molded microfluidic chips, which allow for high-scale production to accommodate large-scale screening. The microfluidic contained a surface-bound aptamer directed against the virus's S protein RBD to affinity select SARS-CoV-2 VPs. Following selection (~94% recovery), the VPs were released from the chip's surface using a blue light light-emitting diode (89% efficiency). Selected SARS-CoV-2 VP enumeration was carried out using reverse transcription quantitative polymerase chain reaction. The VP selection assay successfully identified healthy donors (clinical specificity = 100%) and 19 of 20 patients with coronavirus disease 2019 (COVID-19) (95% sensitivity). In 15 patients with COVID-19, the presence of active SARS-CoV-2 VPs was found. The chip can be reprogrammed for any VP or exosomes by simply changing the affinity agent.

3.
Flow (Camb) ; 22022.
Article in English | MEDLINE | ID: mdl-35936867

ABSTRACT

Most medical diagnostic tests are expensive, involve slow turnaround times from centralized laboratories and require highly specialized equipment with seasoned technicians to carry out the assay. To facilitate realization of precision medicine at the point of care, we have developed a mixed-scale nanosensor chip featuring high surface area pillar arrays where solid-phase reactions can be performed to detect and identify nucleic acid targets found in diseased patients. Products formed can be identified and detected using a polymer nanofluidic channel. To guide delivery of this platform, we discuss the operation of various components of the device and simulations (COMSOL) used to guide the design by investigating parameters such as pillar array loading, and hydrodynamic and electrokinetic flows. The fabrication of the nanosensor is discussed, which was performed using a silicon (Si) master patterned with a combination of focused ion beam milling and photolithography with deep reactive ion etching. The mixed-scale patterns were transferred into a thermoplastic via thermal nanoimprint lithography, which facilitated fabrication of the nanosensor chip making it appropriate for in vitro diagnostics. The results from COMSOL were experimentally verified for hydrodynamic flow using Rhodamine B as a fluorescent tracer and electrokinetic flow using single fluorescently labelled oligonucleotides (single-stranded DNAs, ssDNAs).

4.
Electroanalysis ; 34(12): 1961-1975, 2022 Dec.
Article in English | MEDLINE | ID: mdl-37539083

ABSTRACT

We report an in-plane extended nanopore Coulter counter (XnCC) chip fabricated in a thermoplastic via imprinting. The fabrication of the sensor utilized both photolithography and focused ion beam milling to make the microfluidic network and the in-plane pore sensor, respectively, in Si from which UV resin stamps were generated followed by thermal imprinting to produce the final device in the appropriate plastic (cyclic olefin polymer, COP). As an example of the utility of this in-plane extended nanopore sensor, we enumerated SARS-CoV-2 viral particles (VPs) affinity-selected from saliva and extracellular vesicles (EVs) affinity-selected from plasma samples secured from mouse models exposed to different ionizing radiation doses.

5.
ACS Sens ; 6(8): 3133-3143, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34406743

ABSTRACT

We report a simple method for tailoring the size of in-plane nanopores fabricated in thermoplastics for single-molecule sensing. The in-plane pores were fabricated via nanoimprint lithography (NIL) from resin stamps, which were generated from Si masters. We could reduce the size of the in-plane nanopores from 30 to ∼10 nm during the thermal fusion bonding (TFB) step, which places a cover plate over the imprinted polymer substrate under a controlled pressure and temperature to form the relevant nanofluidic devices. Increased pressures during TFB caused the cross-sectional area of the in-plane pore to be reduced. The in-plane nanopores prepared with different TFB pressures were utilized to detect single-λ-DNA molecules via resistive pulse sensing, which showed a higher current amplitude in devices bonded at higher pressures. Using this method, we also show the ability to tune the pore size to detect single-stranded (ss) RNA molecules and single ribonucleotide adenosine monophosphate (rAMP). However, due to the small size of the pores required for detection of the ssRNA and rAMPs, the surface charge arising from carboxylate groups generated during O2 plasma oxidation of the surfaces of the nanopores to make them wettable had to be reduced to allow translocation of coions. This was accomplished using EDC/NHS coupling chemistry and ethanolamine. This simple modification chemistry increased the event frequency from ∼1 s-1 to >136 s-1 for an ssRNA concentration of 100 nM.


Subject(s)
Nanopores , DNA , Nanotechnology , Polymers , Temperature
6.
ACS Sens ; 6(5): 1831-1839, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33938745

ABSTRACT

Liquid biopsies are becoming popular for managing a variety of diseases due to the minimally invasive nature of their acquisition, thus potentially providing better outcomes for patients. Circulating tumor cells (CTCs) are among the many different biomarkers secured from a liquid biopsy, and a number of efficient platforms for their isolation and enrichment from blood have been reported. However, many of these platforms require manual sample handling, which can generate difficulties when translating CTC assays into the clinic due to potential sample loss, contamination, and the need for highly specialized operators. We report a system modularity chip for the analysis of rare targets (SMART-Chip) composed of three task-specific modules that can fully automate processing of CTCs. The modules were used for affinity selection of the CTCs from peripheral blood with subsequent photorelease, simultaneous counting, and viability determinations of the CTCs and staining/imaging of the CTCs for immunophenotyping. The modules were interconnected to a fluidic motherboard populated with valves, interconnects, pneumatic control channels, and a fluidic network. The SMART-Chip components were made from thermoplastics via microreplication, which lowers the cost of production making it amenable to clinical implementation. The utility of the SMART-Chip was demonstrated by processing blood samples secured from colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC) patients. We were able to affinity-select EpCAM expressing CTCs with high purity (0-3 white blood cells/mL of blood), enumerate the selected cells, determine their viability, and immunophenotype the cells. The assay could be completed in <4 h, while manual processing required >8 h.


Subject(s)
Neoplastic Cells, Circulating , Pancreatic Neoplasms , Cell Count , Cell Separation , Humans , Liquid Biopsy , Pancreatic Neoplasms/diagnosis
7.
Lab Chip ; 21(8): 1579-1589, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33651049

ABSTRACT

DNA damage can take many forms such as double-strand breaks and/or the formation of abasic (apurinic/apyrimidinic; AP) sites. The presence of AP sites can be used to determine therapeutic efficacy of many drugs, such as doxorubicin. While there are different assays to search for DNA damage, they are fraught with limitations, such as the need for large amounts of DNA secured from millions of cells. This is challenging due to the growing importance of using liquid biopsies as a source of biomarkers for many in vitro diagnostic assays. To accommodate the mass limits imposed by the use of liquid biopsies, we report a single-molecule DNA damage assay that uses plastic nanofluidic chips to stretch DNA to near its full contour length when the channel dimensions (width and depth) are near the persistence length (∼50 nm) of double-stranded (ds) DNA. The nanofluidic chip consisted of input funnels for high loading efficiency of single DNA molecules, entropic traps to store the DNA and simultaneously load a series of nanochannels for high throughput processing, and an array of stretching nanochannels to read the AP sites. Single dsDNA molecules, which were labeled with an intercalating dye and a biotinylated aldehyde reactive probe (bARP), could be parked in the stretching nanochannels, where the AP sites were read directly using a dual-color fluorescence microscope equipped with an EMCCD camera. One color of the microscope was used to read the DNA length and the second color detected the AP sites. The nanofluidic chip was made from thermoplastics via nanoimprint lithography, which obviated the need for direct writing the devices in glass or quartz using focused ion beam milling. We show that we can read the frequency of AP sites in single dsDNA molecules with the frequency of AP sites determined by associating fluorescently-labeled streptavidin with bARP through a biotin/streptavidin complex.


Subject(s)
DNA Damage , DNA , DNA/genetics , Microscopy, Fluorescence , Nanotechnology , Streptavidin
8.
Cells ; 9(2)2020 02 24.
Article in English | MEDLINE | ID: mdl-32102446

ABSTRACT

The role of circulating plasma cells (CPCs) and circulating leukemic cells (CLCs) as biomarkers for several blood cancers, such as multiple myeloma and leukemia, respectively, have recently been reported. These markers can be attractive due to the minimally invasive nature of their acquisition through a blood draw (i.e., liquid biopsy), negating the need for painful bone marrow biopsies. CPCs or CLCs can be used for cellular/molecular analyses as well, such as immunophenotyping or fluorescence in situ hybridization (FISH). FISH, which is typically carried out on slides involving complex workflows, becomes problematic when operating on CLCs or CPCs due to their relatively modest numbers. Here, we present a microfluidic device for characterizing CPCs and CLCs using immunofluorescence or FISH that have been enriched from peripheral blood using a different microfluidic device. The microfluidic possessed an array of cross-channels (2-4 µm in depth and width) that interconnected a series of input and output fluidic channels. Placing a cover plate over the device formed microtraps, the size of which was defined by the width and depth of the cross-channels. This microfluidic chip allowed for automation of immunofluorescence and FISH, requiring the use of small volumes of reagents, such as antibodies and probes, as compared to slide-based immunophenotyping and FISH. In addition, the device could secure FISH results in <4 h compared to 2-3 days for conventional FISH.


Subject(s)
B-Lymphocytes/immunology , Cytogenetic Analysis/instrumentation , Immunophenotyping/instrumentation , In Situ Hybridization, Fluorescence/instrumentation , Lab-On-A-Chip Devices , Microfluidics/instrumentation , Molecular Diagnostic Techniques/instrumentation , Neoplastic Cells, Circulating/immunology , Blood Donors , Cell Line , Cytogenetic Analysis/methods , Humans , Immunophenotyping/methods , In Situ Hybridization, Fluorescence/methods , Liquid Biopsy , Microfluidics/methods , Molecular Diagnostic Techniques/methods , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...