Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Mol Neurodegener ; 11(1): 60, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27538496

ABSTRACT

BACKGROUND: Our previous studies of Alzheimer's disease (AD) suggested that glutamine broadly improves cellular readiness to respond to stress and acts as a neuroprotectant both in vitro and in AD mouse models. We now expand our studies to a second neurodegenerative disease, ataxia-telangiectasia (A-T). Unlike AD, where clinically significant cognitive decline does not typically occur before age 65, A-T symptoms appear in early childhood and are caused exclusively by mutations in the ATM (A-T mutated) gene. RESULTS: Genetically ATM-deficient mice and wild type littermates were maintained with or without 4 % glutamine in their drinking water for several weeks. In ATM mutants, glutamine supplementation restored serum glutamine and glucose levels and reduced body weight loss. Lost neurophysiological function assessed through the magnitude of hippocampal long term potentiation was significantly restored. Glutamine supplemented mice also showed reduced thymus pathology and, remarkably, a full one-third extension of lifespan. In vitro assays revealed that ATM-deficient cells are more sensitive to glutamine deprivation, while supra-molar glutamine (8 mM) partially rescued the reduction of BDNF expression and HDAC4 nuclear translocation of genetically mutant Atm(-/-) neurons. Analysis of microarray data suggested that glutamine metabolism is significantly altered in human A-T brains as well. CONCLUSION: Glutamine is a powerful part of an organism's internal environment. Changes in its concentrations can have a huge impact on the function of all organ systems, especially the brain. Glutamine supplementation thus bears consideration as a therapeutic strategy for the treatment of human A-T and perhaps other neurodegenerative diseases.


Subject(s)
Alzheimer Disease/metabolism , Ataxia Telangiectasia/metabolism , Blood Glucose/biosynthesis , Glutamine/pharmacology , Neurons/metabolism , Alzheimer Disease/drug therapy , Animals , Ataxia Telangiectasia/drug therapy , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Disease Models, Animal , Glutamine/metabolism , Mice, Knockout , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology
3.
J Neurophysiol ; 116(1): 201-9, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27075534

ABSTRACT

Ataxia telangiectasia is a multisystemic disorder that includes a devastating neurodegeneration phenotype. The ATM (ataxia-telangiectasia mutated) protein is well-known for its role in the DNA damage response, yet ATM is also found in association with cytoplasmic vesicular structures: endosomes and lysosomes, as well as neuronal synaptic vesicles. In keeping with this latter association, electrical stimulation of the Schaffer collateral pathway in hippocampal slices from ATM-deficient mice does not elicit normal long-term potentiation (LTP). The current study was undertaken to assess the nature of this deficit. Theta burst-induced LTP was reduced in Atm(-/-) animals, with the reduction most pronounced at burst stimuli that included 6 or greater trains. To assess whether the deficit was associated with a pre- or postsynaptic failure, we analyzed paired-pulse facilitation and found that it too was significantly reduced in Atm(-/-) mice. This indicates a deficit in presynaptic function. As further evidence that these synaptic effects of ATM deficiency were presynaptic, we used stochastic optical reconstruction microscopy. Three-dimensional reconstruction revealed that ATM is significantly more closely associated with Piccolo (a presynaptic marker) than with Homer1 (a postsynaptic marker). These results underline how, in addition to its nuclear functions, ATM plays an important functional role in the neuronal synapse where it participates in the regulation of presynaptic vesicle physiology.


Subject(s)
Long-Term Potentiation/physiology , Presynaptic Terminals/metabolism , Synaptic Vesicles/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cells, Cultured , Mice, 129 Strain , Mice, Knockout , Microscopy , Optical Imaging , Tissue Culture Techniques
4.
PLoS One ; 8(9): e70930, 2013.
Article in English | MEDLINE | ID: mdl-24023717

ABSTRACT

Rat strains differ dramatically in their susceptibility to mammary carcinogenesis. On the assumption that susceptibility genes are conserved across mammalian species and hence inform human carcinogenesis, numerous investigators have used genetic linkage studies in rats to identify genes responsible for differential susceptibility to carcinogenesis. Using a genetic backcross between the resistant Copenhagen (Cop) and susceptible Fischer 344 (F344) strains, we mapped a novel mammary carcinoma susceptibility (Mcs30) locus to the centromeric region on chromosome 12 (LOD score of ∼8.6 at the D12Rat59 marker). The Mcs30 locus comprises approximately 12 Mbp on the long arm of rat RNO12 whose synteny is conserved on human chromosome 13q12 to 13q13. After analyzing numerous genes comprising this locus, we identified Fry, the rat ortholog of the furry gene of Drosophila melanogaster, as a candidate Mcs gene. We cloned and determined the complete nucleotide sequence of the 13 kbp Fry mRNA. Sequence analysis indicated that the Fry gene was highly conserved across evolution, with 90% similarity of the predicted amino acid sequence among eutherian mammals. Comparison of the Fry sequence in the Cop and F344 strains identified two non-synonymous single nucleotide polymorphisms (SNPs), one of which creates a putative, de novo phosphorylation site. Further analysis showed that the expression of the Fry gene is reduced in a majority of rat mammary tumors. Our results also suggested that FRY activity was reduced in human breast carcinoma cell lines as a result of reduced levels or mutation. This study is the first to identify the Fry gene as a candidate Mcs gene. Our data suggest that the SNPs within the Fry gene contribute to the genetic susceptibility of the F344 rat strain to mammary carcinogenesis. These results provide the foundation for analyzing the role of the human FRY gene in cancer susceptibility and progression.


Subject(s)
Genetic Predisposition to Disease/genetics , Mammary Neoplasms, Animal/genetics , Proteins/metabolism , Quantitative Trait Loci/genetics , Animals , Blotting, Northern , Cell Line, Tumor , Cells, Cultured , Female , Genotype , Humans , In Situ Hybridization, Fluorescence , Male , Phenotype , Polymerase Chain Reaction , Proteins/genetics , Rats , Rats, Inbred F344
SELECTION OF CITATIONS
SEARCH DETAIL
...