Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 104(5): L053201, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34942843

ABSTRACT

In a dense gas plasma a short laser pulse propagates in a relativistic self-trapping mode, which enables the effective conversion of laser energy to the accelerated electrons. This regime sustains effective loading which maximizes the total charge of the accelerating electrons, that provides a large amount of betatron radiation. The three-dimensional particle-in-cell simulations demonstrate how such a regime triggers x-ray generation with 0.1-1 MeV photon energies, low divergence, and high brightness. It is shown that a 135-TW laser can be used to produce 3×10^{10} photons of >10 keV energy and a 1.2-PW laser makes it possible generating about 10^{12} photons in the same energy range. The laser-to-gamma energy conversion efficiency is up to 10^{-4} for the high-energy photons, ∼100 keV, while the conversion efficiency to the entire keV-range x rays is estimated to be a few tenths of a percent.

SELECTION OF CITATIONS
SEARCH DETAIL
...