Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(39): 44239-44250, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36129836

ABSTRACT

In the present era of intelligent electronics and Internet of Things (IoT), the demand for flexible and wearable devices is very high. Here, we have developed a high-output flexible piezoelectric nanogenerator (PENG) based on electrospun poly(vinylidene fluoride) (PVDF)-barium titanate (BaTiO3) (ES PVDF-BT) composite nanofibers with an enhanced electroactive phase. On addition of 10 wt % BaTiO3 nanoparticles, the electroactive ß-phase of the PVDF is found to be escalated to ∼91% as a result of the synergistic interfacial interaction between the tetragonal BaTiO3 nanoparticles and the ferroelectric host polymer matrix on electrospinning. The fabricated PENG device delivered an open-circuit voltage of ∼50 V and short-circuit current density of ∼0.312 mA m-2. Also, the PVDF-BT nanofiber-based PENG device showed an output power density of ∼4.07 mW m-2, which is 10 times higher than that of a pristine PVDF nanofiber-based PENG device. Furthermore, the developed PENG has been newly demonstrated for self-powered real-time vibration sensing applications such as for mapping of mechanical vibrations from faulty CPU fans, hard disk drives, and electric sewing machines.

SELECTION OF CITATIONS
SEARCH DETAIL
...