Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Medicina (Kaunas) ; 58(3)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35334527

ABSTRACT

Background and Objectives: The pathogenic variants of SLC9A6 are a known cause of a rare, X-linked neurological disorder called Christianson syndrome (CS). The main characteristics of CS are developmental delay, intellectual disability, and neurological findings. This study investigated the genetic basis and explored the molecular changes that led to CS in two male siblings presenting with intellectual disability, epilepsy, behavioural problems, gastrointestinal dysfunction, poor height, and weight gain. Materials and Methods: Next-generation sequencing of a tetrad was applied to identify the DNA changes and Sanger sequencing of proband's cDNA was used to evaluate the impact of a splice site variant on mRNA structure. Bioinformatical tools were used to investigate SLC9A6 protein structure changes. Results: Sequencing and bioinformatical analysis revealed a novel donor splice site variant (NC_000023.11(NM_001042537.1):c.899 + 1G > A) that leads to a frameshift and a premature stop codon. Protein structure modelling showed that the truncated protein is unlikely to form any functionally relevant SLC9A6 dimers. Conclusions: Molecular and bioinformatical analysis revealed the impact of a novel donor splice site variant in the SLC9A6 gene that leads to truncated and functionally disrupted protein causing the phenotype of CS in the affected individuals.


Subject(s)
Epilepsy , Intellectual Disability , Microcephaly , Ataxia , Epilepsy/genetics , Genetic Diseases, X-Linked , Humans , Intellectual Disability/genetics , Lithuania , Male , Microcephaly/genetics , Ocular Motility Disorders
2.
Genes (Basel) ; 12(8)2021 08 10.
Article in English | MEDLINE | ID: mdl-34440405

ABSTRACT

Ionising radiation (IR) is an environmental factor known to alter genomes and therefore challenge organisms to adapt. Lithuanian clean-up workers of the Chernobyl nuclear disaster (LCWC) experienced high doses of IR, leading to different consequences. This study aims to characterise a unique protective genomic variation in a relatively healthy LCWC group. This variation influenced their individual reaction to IR and potentially protects against certain diseases such as exfoliation syndrome and glaucoma. Clinical and IR dosage data were collected using a questionnaire to characterise the cohort of 93 LCWC. Genome-wide genotyping using Illumina beadchip technology was performed. The control group included 466 unrelated, self-reported healthy individuals of Lithuanian descent. Genotypes were filtered out from the microarray dataset using a catalogue of SNPs. The data were used to perform association, linkage disequilibrium, and epistasis analysis. Phenotype data analysis showed the distribution of the most common disease groups among the LCWC. A genomic variant of statistical significance (Fishers' exact test, p = 0.019), rs3825942, was identified in LOXL1 (NM_005576.4:c.458G>A). Linkage disequilibrium and epistasis analysis for this variant identified the genes LHFPL3, GALNT6, PIH1D1, ANKS1B, and METRNL as potentially involved in the etiopathogenesis of exfoliation syndrome and glaucoma, which were not previously associated with the disease. The LOXL1 variant is mostly considered a risk factor in the development of exfoliation syndrome and glaucoma. The influence of recent positive selection, the phenomenon of allele-flipping, and the fact that only individuals with the homozygous reference allele have glaucoma in the cohort of the LCWC suggest otherwise. The identification of rs3825942 and other potentially protective genomic variants may be useful for further analysis of the genetic architecture and etiopathogenetic mechanisms of other multifactorial diseases.


Subject(s)
Amino Acid Oxidoreductases/genetics , Chernobyl Nuclear Accident , Occupational Exposure , Case-Control Studies , Cohort Studies , Humans , Linkage Disequilibrium , Male , Ukraine
SELECTION OF CITATIONS
SEARCH DETAIL
...