Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Oncol ; 28(2): 278-284, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28073786

ABSTRACT

Background: Patients with EGFR-mutant lung cancers treated with EGFR tyrosine kinase inhibitors (TKIs) develop clinical resistance, most commonly with acquisition of EGFR T790M. Evolutionary modeling suggests that a schedule of twice weekly pulse and daily low-dose erlotinib may delay emergence of EGFR T790M. Pulse dose erlotinib has superior central nervous system (CNS) penetration and may result in superior CNS disease control. Methods: We evaluated toxicity, pharmacokinetics, and efficacy of twice weekly pulse and daily low-dose erlotinib. We assessed six escalating pulse doses of erlotinib. Results: We enrolled 34 patients; 11 patients (32%) had brain metastases at study entry. We observed 3 dose-limiting toxicities in dose escalation: transaminitis, mucositis, and rash. The MTD was erlotinib 1200 mg days 1-2 and 50 mg days 3-7 weekly. The most frequent toxicities (any grade) were rash, diarrhea, nausea, fatigue, and mucositis. 1 complete and 24 partial responses were observed (74%, 95% CI 60-84%). Median progression-free survival was 9.9 months (95% CI 5.8-15.4 months). No patient had progression of an untreated CNS metastasis or developed a new CNS lesion while on study (0%, 95% CI 0-13%). Of the 18 patients with biopsies at progression, EGFR T790M was identified in 78% (95% CI 54-91%). Conclusion: This is the first clinical implementation of an anti-cancer TKI regimen combining pulse and daily low-dose administration. This evolutionary modeling-based dosing schedule was well-tolerated but did not improve progression-free survival or prevent emergence of EGFR T790M, likely due to insufficient peak serum concentrations of erlotinib. This dosing schedule prevented progression of untreated or any new central nervous system metastases in all patients.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents/administration & dosage , ErbB Receptors/genetics , Erlotinib Hydrochloride/administration & dosage , Lung Neoplasms/drug therapy , Adenocarcinoma/genetics , Adult , Aged , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/toxicity , Erlotinib Hydrochloride/pharmacokinetics , Erlotinib Hydrochloride/toxicity , Female , Humans , Lung Neoplasms/genetics , Male , Maximum Tolerated Dose , Middle Aged , Mutation, Missense , Pulse Therapy, Drug
2.
Metabolomics ; 11(4): 787-796, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26207106

ABSTRACT

Cancer metabolism is characterized by increased macromolecular syntheses through coordinated increases in energy and substrate metabolism. The observation that cancer cells produce lactate in an environment of oxygen sufficiency (aerobic glycolysis) is a central theme of cancer metabolism known as the Warburg effect. Aerobic glycolysis in cancer metabolism is accompanied by increased pentose cycle and anaplerotic activities producing energy and substrates for macromolecular synthesis. How these processes are coordinated is poorly understood. Recent advances have focused on molecular regulation of cancer metabolism by oncogenes and tumor suppressor genes which regulate numerous enzymatic steps of central glucose metabolism. In the past decade, new insights in cancer metabolism have emerged through the application of stable isotopes particularly from 13C carbon tracing. Such studies have provided new evidence for system-wide changes in cancer metabolism in response to chemotherapy. Interestingly, experiments using metabolic inhibitors on individual biochemical pathways all demonstrate similar system-wide effects on cancer metabolism as in targeted therapies. Since biochemical reactions in the Warburg effect place competing demands on available precursors, high energy phosphates and reducing equivalents, the cancer metabolic system must fulfill the condition of balance of flux (homeostasis). In this review, the functions of the pentose cycle and of the tricarboxylic acid (TCA) cycle in cancer metabolism are analyzed from the balance of flux point of view. Anticancer treatments that target molecular signaling pathways or inhibit metabolism alter the invasive or proliferative behavior of the cancer cells by their effects on the balance of flux (homeostasis) of the cancer metabolic phenotype.

3.
Metabolomics ; 10(5): 920-937, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25254002

ABSTRACT

Deficiency of IQGAP2, a scaffolding protein expressed primarily in liver leads to rearrangements of hepatic protein compartmentalization and altered regulation of enzyme functions predisposing development of hepatocellular carcinoma and diabetes. Employing a systems approach with proteomics, metabolomics and fluxes characterizations, we examined the effects of IQGAP2 deficient proteomic changes on cellular metabolism and the overall metabolic phenotype. Iqgap2-/- mice demonstrated metabolic inflexibility, fasting hyperglycemia and obesity. Such phenotypic characteristics were associated with aberrant hepatic regulations of glycolysis/gluconeogenesis, glycogenolysis, lipid homeostasis and futile cycling corroborated with corresponding proteomic changes in cytosolic and mitochondrial compartments. IQGAP2 deficiency also led to truncated TCA-cycle, increased anaplerosis, increased supply of acetyl-CoA for de novo lipogenesis, and increased mitochondrial methyl-donor metabolism necessary for nucleotides synthesis. Our results suggest that changes in metabolic networks in IQGAP2 deficiency create a hepatic environment of a 'pre-diabetic' phenotype and a predisposition to non-alcoholic fatty liver disease (NAFLD) which has been linked to the development of hepatocellular carcinoma.

4.
Cell Metab ; 15(6): 873-84, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22682225

ABSTRACT

Dissecting the role of insulin in the complex regulation of triglyceride metabolism is necessary for understanding dyslipidemia and steatosis. Liver insulin receptor knockout (LIRKO) mice show that in the physiological context of feeding, hepatic insulin signaling is not required for the induction of mTORC1, an upstream activator of the lipogenic regulator, SREBP-1c. Feeding induces SREBP-1c mRNA in LIRKO livers, though not to the extent observed in controls. A high fructose diet also partially induces SREBP-1c and lipogenic gene expression in LIRKO livers. Insulin signaling becomes more important in the pathological context of obesity, as knockdown of the insulin receptor in ob/ob mice, a model of Type 2 diabetes, using antisense oligonucleotides, abolishes the induction of SREBP-1c and its targets by obesity and ameliorates steatosis. Thus, insulin-independent signaling pathways can partially compensate for insulin in the induction of SREBP-1c by feeding but the further induction by obesity/Type 2 diabetes is entirely dependent upon insulin.


Subject(s)
Gene Expression Regulation , Insulin/physiology , Liver/metabolism , Obesity/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Animals , Cell Nucleus/metabolism , Cells, Cultured , Diabetes Mellitus, Type 2/metabolism , Dietary Carbohydrates/administration & dosage , Fatty Liver/metabolism , Female , Fructose/administration & dosage , Gene Expression , Gene Knockdown Techniques , Glucose/metabolism , Glucose/physiology , Hepatocytes/metabolism , Ketones/blood , Lipogenesis/genetics , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Mice, Transgenic , RNA Interference , Receptor, Insulin/deficiency , Receptor, Insulin/genetics , Signal Transduction , Sterol Regulatory Element Binding Protein 1/genetics , Triglycerides/metabolism
5.
Diabetologia ; 53(10): 2224-32, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20577711

ABSTRACT

AIMS/HYPOTHESIS: Recent work has shown that there can be significant differences when glucose disposal is assessed for high-fat induced insulin resistance by static clamp methods vs dynamic assessment during a stable isotope i.p. glucose tolerance test. MKR mice, though lean, have severe insulin resistance and decreased muscle fatty acid oxidation. Our goal was to assess dynamic vs static glucose disposal in MKR mice, and to correlate glucose disposal and muscle-adipose-liver flux interactions with metabolic flexibility (indirect calorimetry) and muscle characteristics. METHODS: Stable isotope flux phenotyping was performed using [6,6-(2)H(2)]glucose, [U-(13)C(6)]glucose and [2-(13)C]glycerol. Muscle triacylglycerol (TAG) and diacylglycerol (DAG) content was assessed by thin layer chromatography, and histological determination of fibre type and cytochrome c activity performed. Metabolic flexibility was assessed by indirect calorimetry. RESULTS: Indirect calorimetry showed that MKR mice used more glucose than FVB/N mice during fasting (respiratory exchange ratio [RER] 0.88 vs 0.77, respectively). Compared with FVB/N mice, MKR mice had faster dynamic glucose disposal, despite increased whole-muscle DAG and TAG, and similar hepatic glucose production with higher fasting insulin and unchanged basal glucose. Fed MKR muscle had more glycogen, and increased levels of GLUT1 and GLUT4 than FVB/N muscle. Histology indicated that MKR soleus had mildly decreased cytochrome c activity overall and more type II (glycolytic) fibres compared with that in FVB/N mice. CONCLUSIONS/INTERPRETATION: MKR muscle adapts to using glucose, with more type II fibres present in red muscle. Fasting RER is elevated and glucose disposal during an i.p. glucose tolerance test is accelerated despite increased muscle DAG and TAG. Metabolic inflexibility may result from the compensatory use of fuel that can be best utilised for energy requirements; static vs dynamic glucose disposal assessments may measure complementary aspects of metabolic flexibility and insulin sensitivity.


Subject(s)
Glucose/metabolism , Insulin Resistance/physiology , Insulin/metabolism , Liver/metabolism , Muscle, Skeletal/metabolism , Animals , Blotting, Western , Body Composition/physiology , Calorimetry, Indirect , Glucose Tolerance Test , Hyperglycemia/metabolism , Lipid Metabolism/physiology , Lipid Metabolism/radiation effects , Male , Mice , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...