Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36080258

ABSTRACT

Quercetin (QUE) is a well-known natural product that can exert beneficial properties on human health. However, due to its low solubility its bioavailability is limited. In the present study, we examine whether its formulation with two cyclodextrins (CDs) may enhance its pharmacological profile. Comparative interaction studies of quercetin with 2-hydroxyl-propyl-ß-cyclodextrin (2HP-ß-CD) and 2,6-methylated cyclodextrin (2,6Me-ß-CD) were performed using NMR spectroscopy, DFT calculations, and in silico molecular dynamics (MD) simulations. Using T1 relaxation experiments and 2D DOSY it was illustrated that both cyclodextrin vehicles can host quercetin. Quantum mechanical calculations showed the formation of hydrogen bonds between QUE with 2HP-ß-CD and 2,6Μe-ß-CD. Six hydrogen bonds are formed ranging between 2 to 2.8 Å with 2HP-ß-CD and four hydrogen bonds within 2.8 Å with 2,6Μe-ß-CD. Calculations of absolute binding free energies show that quercetin binds favorably to both 2,6Me-ß-CD and 2HP-ß-CD. MM/GBSA results show equally favorable binding of quercetin in the two CDs. Fluorescence spectroscopy shows moderate binding of quercetin in 2HP-ß-CD (520 M-1) and 2,6Me-ß-CD (770 M-1). Thus, we propose that both formulations (2HP-ß-CD:quercetin, 2,6Me-ß-CD:quercetin) could be further explored and exploited as small molecule carriers in biological studies.


Subject(s)
Cyclodextrins , beta-Cyclodextrins , Cyclodextrins/chemistry , Humans , Hydroxyl Radical , Molecular Dynamics Simulation , Quercetin/chemistry , Solubility , beta-Cyclodextrins/chemistry
2.
Mol Pharm ; 17(11): 4241-4255, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32986435

ABSTRACT

Quercetin (Que) is a flavonoid associated with high oxygen radical scavenging activity and potential neuroprotective activity against Alzheimer's disease. Que's oral bioavailability is limited by its low water solubility and extended peripheral metabolism; thus, nasal administration may be a promising alternative to achieve effective Que concentrations in the brain. The formation of Que-2-hydroxypropylated-ß-cyclodextrin (Que/HP-ß-CD) complexes was previously found to increase the molecule's solubility and stability in aqueous media. Que-methyl-ß-cyclodextrin (Que/Me-ß-CD) inclusion complexes were prepared, characterized, and compared with the Que/HP-ß-CD complex using biophysical and computational methods (phase solubility, fluorescence and NMR spectroscopy, differential scanning calorimetry (DSC), and molecular dynamics simulations (MDS)) as candidates for the preparation of nose-to-brain Que's delivery systems. DSC thermograms, NMR, fluorescence spectroscopy, and MDS confirmed the inclusion complex formation of Que with both CDs. Differences between the two preparations were observed regarding their thermodynamic stability and inclusion mode governing the details of molecular interactions. Que's solubility in aqueous media at pH 1.2 and 4.5 was similar and linearly increased with both CD concentrations. At pH 6.8, Que's solubility was higher and positively deviated from linearity in the presence of HP-ß-CD more than with Me-ß-CD, possibly revealing the presence of more than one HP-ß-CD molecule involved in the complex. Overall, water solubility of lyophilized Que/Me-ß-CD and Que/HP-ß-CD products was approximately 7-40 times and 14-50 times as high as for pure Que at pH 1.2-6.8. In addition, the proof of concept experiment on ex vivo permeation across rabbit nasal mucosa revealed measurable and similar Que permeability profiles with both CDs and negligible permeation of pure Que. These results are quite encouraging for further ex vivo and in vivo evaluation toward nasal administration and nose-to-brain delivery of Que.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/chemistry , Brain/drug effects , Drug Compounding/methods , Drug Delivery Systems/methods , Nasal Mucosa/drug effects , Quercetin/administration & dosage , Quercetin/chemistry , beta-Cyclodextrins/chemistry , Administration, Intranasal/methods , Animals , Biological Availability , Drug Stability , Hydrogen-Ion Concentration , Quercetin/pharmacokinetics , Rabbits , Solubility , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...