Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Res ; 35(8): 1340-1348, 2021 Apr.
Article in English | MEDLINE | ID: mdl-31429302

ABSTRACT

A series of new 1,3-thiazole derivatives of maleopimaric acid 6a-f, 7a-f were synthesized and evaluated for anticancer, antibacterial and antifungal activities. Evaluation of cytotoxic activity against human embryonic kidney 293 cells (HEK293), human neuroblastoma cell line (SH-SY5Y), hepatocellular carcinoma cell line (HepG2) and human T-cell lymphoblast-like line (Jurkat), showed that introduction of the aminothiazole fragment at position 6 of the diterpenoid molecule leads to decrease of cell viability. Substance 3 was found to be the most active against all tested cell lines, inhibiting cell viability with IC50 values in the range of 2-24 µM. The structure-activity relationship of these compounds was studied and the results show that the compounds 6c and 7e exhibited in vitro antifungal activity against Candida albicans and also possessed antibacterial profile against Enterobacter aerogenes, Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli and Proteus vulgaris.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Thiazoles/chemical synthesis , Thiazoles/pharmacology , Triterpenes/chemical synthesis , Triterpenes/pharmacology , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Antineoplastic Agents/chemistry , Bacteria/drug effects , Candida albicans/drug effects , Cell Death/drug effects , Cell Line , Humans , Microbial Sensitivity Tests , Structure-Activity Relationship , Thiazoles/chemistry , Triterpenes/chemistry
2.
J Biomed Sci ; 21: 74, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-25096780

ABSTRACT

BACKGROUND: Noopept (N-phenyl-acetyl-L-prolylglycine ethyl ester) was constructed as a dipeptide analog of the standard cognition enhancer, piracetam. Our previous experiments have demonstrated the cognition restoring effect of noopept in several animal models of Alzheimer disease (AD). Noopept was also shown to prevent ionic disbalance, excitotoxicity, free radicals and pro-inflammatory cytokines accumulation, and neurotrophine deficit typical for different kinds of brain damages, including AD. In this study, we investigated the neuroprotective action of noopept on cellular model of AD, Aß 25-35-induced toxicity in PC12 cells and revealed the underlying mechanisms. RESULTS: The neuroprotective effect of noopept (added to the medium at 10 µM concentration, 72 hours before Ðß 25-35) was studied on Ðß 25-35-induced injury (5 µM for 24 h) in PC12 cells. The ability of drug to protect the impairments of cell viability, calcium homeostasis, ROS level, mitochondrial function, tau phosphorylation and neurite outgrowth caused by Ðß 25-35 were evaluated. Following the exposure of PC12 cells to Ðß 25-35 an increase of the level of ROS, intracellular calcium, and tau phosphorylation at Ser396 were observed; these changes were accompanied by a decrease in cell viability and an increase of apoptosis. Noopept treatment before the amyloid-beta exposure improved PC12 cells viability, reduced the number of early and late apoptotic cells, the levels of intracellular reactive oxygen species and calcium and enhanced the mitochondrial membrane potential. In addition, pretreatment of PC12 cell with noopept significantly attenuated tau hyperphosphorylation at Ser396 and ameliorated the alterations of neurite outgrowth evoked by Аß25-35. CONCLUSIONS: Taken together, these data provide evidence that novel cognitive enhancer noopept protects PC12 cell against deleterious actions of Aß through inhibiting the oxidative damage and calcium overload as well as suppressing the mitochondrial apoptotic pathway. Moreover, neuroprotective properties of noopept likely include its ability to decrease tau phosphorylation and to restore the altered morphology of PC12 cells. Therefore, this nootropic dipeptide is able to positively affect not only common pathogenic pathways but also disease-specific mechanisms underlying Aß-related pathology.


Subject(s)
Amyloid beta-Peptides/toxicity , Apoptosis/drug effects , Dipeptides/pharmacology , Neuroprotective Agents/pharmacology , Peptide Fragments/toxicity , tau Proteins/metabolism , Alzheimer Disease , Animals , Cell Survival/drug effects , Disease Models, Animal , Humans , PC12 Cells , Phosphorylation , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...