Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 43: 128055, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33892103

ABSTRACT

The antibacterial properties of close noscapine analogs have not been previously reported. We used our pDualrep2 double-reporter High Throughput Screening (HTS) platform to identify a series of noscapine derivatives with promising antibacterial activity. The platform is based on RPF (SOS-response/DNA damage) and Katushka2S (inhibition of translation) proteins and simultaneously provides information on antibacterial activity and the mechanism of action of small-molecule compounds against E. coli. The most potent compound exhibited an MIC of 13.5 µM(6.25 µg/ml) and a relatively low cytotoxicity against HEK293 cells (CC50 = 71 µM, selectivity index: ~5.5). Some compounds from this series induced average Katushka2S reporter signals, indicating inhibition of translation machinery in the bacteria; however, these compounds did not attenuate translation in vitro in a luciferase-based translation assay. The most effective compounds did not significantly arrest the mitotic cycle in HEK293 cells, in contrast to the parent compound in a flow cytometry assay. Several molecules showed activity against clinically relevant gram-negative and gram-positive bacterial strains. Compounds from the discovered series can be reasonably regarded as good templates for further development and evaluation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Noscapine/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Microbial Sensitivity Tests , Molecular Structure , Noscapine/chemical synthesis , Noscapine/chemistry , Structure-Activity Relationship
2.
Nat Prod Res ; 35(22): 4256-4264, 2021 Nov.
Article in English | MEDLINE | ID: mdl-31790286

ABSTRACT

Novel derivatives of quinolizidine alkaloid (-)-cytisine were synthesised. ADME properties, cytotoxicity against HEK293 cells and activity against viruses of influenza A/California/07/09(H1N1)pdm09 virus (IAV) and human parainfluenza virus type 3 (HPIV3) were evaluated. It was shown, that 9-carboxamides of methylcytisine (with phenyl and allyl urea's fragments) are most active compounds against IAV probably due to predicted in silico peculiarity of their interactions with the 4R7B active site of IAV neuraminidase. Indexes of selectivity (SI) calculated as ratio of CC50/IC50 of these ureas are 47 and 59 correspondingly. It was also found, that derivatives obtained from allyl isocyanate and (-)-cytisine or 9,11-dibromocytisine are able to inhibit a reproduction of HPIV3 with SI = 58 and 95. Moreover, last compound - (1 R,5R)-N-allyl-9,11-dibromo-8-oxo-1,5,6,8-tetrahydro-2H-1,5-methanopyrido[1,2-a][1,5]diazocine-3(4H)-carboxamide with two bromine atom in 2-pyridone core of starting (-)-cytisine molecule, demonstrated high activity against HPIV3 (SI = 95) and moderate activity against IAV (SI = 16).


Subject(s)
Alkaloids , Influenza A Virus, H1N1 Subtype , Influenza, Human , Quinolizidines , Alkaloids/pharmacology , Amides , Antiviral Agents/pharmacology , Azocines , HEK293 Cells , Humans , Parainfluenza Virus 3, Human , Quinolizines
SELECTION OF CITATIONS
SEARCH DETAIL
...