Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(5)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37238916

ABSTRACT

Owing to drawbacks in the current common cancer therapies including surgery, chemotherapy and radiotherapy, the development of more reliable, low toxic, cost-effective and specific approaches such as immunotherapy is crucial. Breast cancer is among the leading causes of morbidity and mortality with a developed anticancer resistance. Accordingly, we attempted to uncover the efficacy of metallic nanoparticles (MNPs)-based breast cancer immunotherapy emphasizing trained immunity provocation or innate immunity adaptation. Due to the immunosuppressive nature of the tumor microenvironment (TME) and the poor infiltration of immune cells, the potentiation of an immune response or direct combat is a goal employing NPs as a burgeoning field. During the recent decades, the adaptation of the innate immunity responses against infectious diseases and cancer has been recognized. Although the data is in a scarcity with regard to a trained immunity function in breast cancer cells' elimination, this study introduced the potential of this arm of immunity adaptation using MNPs.

3.
BMC Cancer ; 22(1): 1220, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36434591

ABSTRACT

Owing to non-responsiveness of a high number of patients to the common melanoma therapies, seeking novel approaches seem as an unmet requirement. Chimeric antigen receptor (CAR) T cells were initially employed against recurrent or refractory B cell malignancies. However, advanced stages or pretreated patients have insufficient T cells (lymphopenia) amount for collection and clinical application. Additionally, this process is time-consuming and logistically cumbersome. Another limitation of this approach is toxicity and cytokine release syndrome (CRS) progress and neurotoxicity syndrome (NS). Natural killer (NK) cells are a versatile component of the innate immunity and have several advantages over T cells in the application for therapies such as availability, unique biological features, safety profile, cost effectiveness and higher tissue residence. Additionally, CAR NK cells do not develop Graft-versus-host disease (GvHD) and are independent of host HLA genotype. Notably, the NK cells number and activity is affected in the tumor microenvironment (TME), paving the way for developing novel approaches by enhancing their maturation and functionality. The CAR NK cells short lifespan is a double edge sword declining toxicity and reducing their persistence. Bispecific and Trispecific Killer Cell Engagers (BiKE and Trike, respectively) are emerging and promising immunotherapies for efficient antibody dependent cell cytotoxicity (ADCC). CAR NK cells have some limitations in terms of expanding and transducing NK cells from donors to achieve clinical response. Clinical trials are in scarcity regarding the CAR NK cell-based cancer therapies. The CAR NK cells short life span following irradiation before infusion limits their efficiency inhibiting their in vivo expansion. The CAR NK cells efficacy enhancement in terms of lifespan TME preparation and stability is a goal for melanoma treatment. Combination therapies using CAR NK cells and chemotherapy can also overcome therapy limitations.


Subject(s)
Melanoma , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Killer Cells, Natural , Immunotherapy, Adoptive/adverse effects , Immunotherapy , Melanoma/therapy , Melanoma/etiology , Tumor Microenvironment
4.
Biomed Res Int ; 2022: 2346941, 2022.
Article in English | MEDLINE | ID: mdl-36420097

ABSTRACT

Skin cancer is one of leading cancers globally, divided into two major categories including melanoma and nonmelanoma. Skin cancer is a global concern with an increasing trend, hence novel therapies are essential. The local treatment strategies play a key role in skin cancer therapy. Nanoparticles (NPs) exert potential applications in medicine with huge advantages and have the ability to overcome common chemotherapy problems. Recently, NPs have been used in nanomedicine as promising drug delivery systems. They can enhance the solubility of poorly water-soluble drugs, improve pharmacokinetic properties, modify bioavailability, and reduce drug metabolism. The high-efficient, nontoxic, low-cost, and specific cancer therapy is a promising goal, which can be achieved by the development of nanotechnology. Metallic NPs (MNPs) can act as important platforms. MNPs development seeks to enhance the therapeutic efficiency of medicines through site specificity, prevention of multidrug resistance, and effective delivery of therapeutic factors. MNPs are used as potential arms in the case of cancer recognition, such as Magnetic Resonance Imaging (MRI) and colloidal mediators for magnetic hyperthermia of cancer. The applications of MNPs in the cancer treatment studies are mostly due to their potential to carry a large dose of drug, resulting in a high concentration of anticancer drugs at the target site. Therefore, off-target toxicity and suffering side effects caused by high concentration of the drug in other parts of the body are avoided. MNPs have been applied as drug carriers for the of improvement of skin cancer treatment and drug delivery. The development of MNPs improves the results of many cancer treatments. Different types of NPs, such as inorganic and organic NPs have been investigated in vitro and in vivo for the skin cancer therapy. MNPs advantages mostly include biodegradability, electrostatic charge, good biocompatibility, high drug payload, and low toxicity. However, the use of controlled-release systems stimulated by electromagnetic waves, temperature, pH, and light improves the accumulation in tumor tissues and improves therapeutic outcomes. This study (2019-2022) is aimed at reviewing applications of MNPs in the skin cancer therapy.


Subject(s)
Magnetite Nanoparticles , Skin Neoplasms , Humans , Magnetite Nanoparticles/chemistry , Administration, Cutaneous , Drug Delivery Systems/methods , Skin Neoplasms/drug therapy , Drug Carriers/chemistry
5.
Front Immunol ; 13: 947885, 2022.
Article in English | MEDLINE | ID: mdl-36072596

ABSTRACT

ATP and other nucleoside phosphates have specific receptors named purinergic receptors. Purinergic receptors and ectonucleotidases regulate various signaling pathways that play a role in physiological and pathological processes. Extracellular ATP in the tumor microenvironment (TME) has a higher level than in normal tissues and plays a role in cancer cell growth, survival, angiogenesis, metastasis, and drug resistance. In this review, we investigated the role of purinergic receptors in the development of resistance to therapy through changes in tumor cell metabolism. When a cell transforms to neoplasia, its metabolic processes change. The metabolic reprogramming modified metabolic feature of the TME, that can cause impeding immune surveillance and promote cancer growth. The purinergic receptors contribute to therapy resistance by modifying cancer cells' glucose, lipid, and amino acid metabolism. Limiting the energy supply of cancer cells is one approach to overcoming resistance. Glycolysis inhibitors which reduce intracellular ATP levels may make cancer cells more susceptible to anti-cancer therapies. The loss of the P2X7R through glucose intolerance and decreased fatty acid metabolism reduces therapeutic resistance. Potential metabolic blockers that can be employed in combination with other therapies will aid in the discovery of new anti-cancer immunotherapy to overcome therapy resistance. Therefore, therapeutic interventions that are considered to inhibit cancer cell metabolism and purinergic receptors simultaneously can potentially reduce resistance to treatment.


Subject(s)
Drug Resistance, Neoplasm , Neoplasms , Adenosine Triphosphate/metabolism , Humans , Neoplasms/metabolism , Neoplasms/therapy , Receptors, Purinergic/metabolism , Tumor Microenvironment
6.
Biomed Res Int ; 2022: 7341493, 2022.
Article in English | MEDLINE | ID: mdl-35845944

ABSTRACT

In this work, the discovery and description of PF-07321332, a major bioavailable oral SARS-CoV-2 protease inhibitor with in vitro human coronavirus antiviral activity, and excellent selection of off-target and in vivo immune profiles are reported. Various drugs and novel compound candidates for the treatment of the COVID-19 pandemic have been developed. PF-07321332 (or nirmatrelvir) is a new oral antiviral drug developed by Pfizer. In response to the pandemic, Pfizer has developed the COVID vaccine and in 2022 will launch its new major anti-SARS-Cov-2 protease inhibitor (PI). The combination of ritonavir and nirmatrelvir is under study in phase III of the clinical trial with a brand name Paxlovid. Paxlovid is an active 3Cl protease inhibitor. Paxlovid exerts its antiviral efficacy by inhibiting a necessary protease in the viral replication procedure. Proteases of coronavirus cleave several sites in the viral polyprotein where pyrrolidone was replaced by flexible glutamine. Due to the coronavirus pandemic, there is high demand for synthesis and development of this novel drug. Herein, we report the synthetic route and the mechanism of action was recently published on nirmatrelvir. Also, a comparison of the performance of two new oral antiviruses (molnupiravir and nirmatrelvir) for the treatment of COVID-19 is described. This review will be helpful for different disciplines such as biochemistry, organic chemistry, medicinal chemistry, and pharmacology.


Subject(s)
COVID-19 Drug Treatment , Pandemics , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Vaccines , Coronavirus 3C Proteases , Cysteine Endopeptidases , Drug Combinations , Humans , Lactams , Leucine , Nitriles , Proline , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Ritonavir , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry
7.
Mol Biol Rep ; 49(11): 10627-10633, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35715610

ABSTRACT

Chimeric antigen receptor T (CAR-T) cell therapy procedure includes taking personal T cells and processing or genetic engineering using specific antigens and in vitro expanding and eventually infusing into the patient's body to unleash immune responses. Adoptive cell therapy (ACT) includes lymphocytes taking, in vitro selection and expansion and processing for stimulation or activation and infusion into the patient's body. Immune checkpoint inhibitors (ICIs), ACT and CAR-T cell therapies have demonstrated acceptable results. However, rare CAR-T cells tissue infiltration, off-target toxicity and resistance development include main disadvantages of CAR-T cell based therapy. Selection of suitable target antigens and novel engineered immune cells are warranted in future studies using "surfaceome" analysis. Employment of cytokines (IL-2, IL-7) for T cells activation has been also associated with specific anti-melanoma function which overcome telomeres shortening and further T cells differentiation. In resistant cases, rapidly accelerated fibrosarcoma B-type and mitogen-activated extracellular signal-regulated kinase inhibitors have been mostly applied. The aim of this study was evaluation of CAR-T cell and adoptive cell therapies efficiency for the treatment of melanoma.


Subject(s)
Melanoma , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Receptors, Antigen, T-Cell/genetics , Immunotherapy, Adoptive/methods , Melanoma/therapy , T-Lymphocytes , Immunotherapy
8.
J Med Virol ; 94(9): 4088-4096, 2022 09.
Article in English | MEDLINE | ID: mdl-35538614

ABSTRACT

Innate and acquired immunity responses are crucial for viral infection elimination. However, genetic variations in coding genes may exacerbate the inflammation or initiate devastating cytokine storms which poses severe respiratory conditions in coronavirus disease-19 (COVID-19). Host genetic variations in particular those related to the immune responses determine the patients' susceptibility and COVID-19 severity and pathophysiology. Gene polymorphisms such as single nucleotide polymorphisms (SNPs) of interferons, TNF, IL1, IL4, IL6, IL7, IL10, and IL17 predispose patients to the severe form of COVID-19 or severe acute respiratory syndrome coronavirus-2 (SARS-COV-2). These variations mainly alter the gene expression and cause a severe response by B cells, T cells, monocytes, neutrophils, and natural killer cells participating in a cytokine storm. Moreover, cytokines and chemokines SNPs are associated with the severity of COVID-19 and clinical outcomes depending on the corresponding effect. Additionally, genetic variations in genes encoding toll-like receptors (TLRs) mainly TLR3, TLR7, and TLR9 have been related to the COVID-19 severe respiratory symptoms. The specific relation of these mutations with the novel variants of concern (VOCs) infection remains to be elucidated. Genetic variations mainly within genes encoding proinflammatory cytokines, cytokine receptors, and TLRs predispose patients to COVID-19 disease severity. Understanding host immune gene variations associated with the SARS-COV-2 infection opens insights to control the pathophysiology of emerging viral infections.


Subject(s)
COVID-19 , Cytokines , Receptors, Cytokine , Toll-Like Receptors , COVID-19/genetics , COVID-19/physiopathology , Cytokine Release Syndrome/genetics , Cytokines/genetics , Humans , Receptors, Cytokine/genetics , SARS-CoV-2 , Toll-Like Receptors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...