Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 80(Pt 1): 27-37, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38205837

ABSTRACT

2-Iminocoumarin-3-carboxamide (2-imino-2 H-chromene-3-carboxylic acid) is a perspective compound for use in the pharmaceutical industry. This compound crystallized from several solvents as two concomitant polymorphic forms. The monoclinic polymorph, crystallized initially, is formed due to strong N-H...O hydrogen bonds, weak C-H...O and C-H...N(π) hydrogen bonds, and stacking interactions of `head-to-head' type. The triclinic polymorphic form obtained due to slow evaporation of the same solution is formed due to only strong intermolecular interactions, N-H...O hydrogen bonds of two types, and stacking interactions of two types. Analysis of pairwise interaction energies showed that the monoclinic structure is columnar while the triclinic one is layered. Calculations in a periodic approximation of their lattice energies confirmed that the monoclinic polymorphic crystals are metastable as compared to the stable triclinic polymorph. Further quantum chemical modeling of possible structure deformations proved that both concomitant polymorphs can not be transformed into a new polymorphic form under external influence.

2.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 3): 192-200, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36910005

ABSTRACT

The title compound, C30H33N4O2F, can be obtained via a two-step synthetic scheme involving 1-benzyl-6-fluoro-4-oxo-7-(piperidin-1-yl)-1,4-di-hydro-quino-line-3-carbo-nitrile as a starting compound that undergoes substitution with hydroxyl-amine and subsequent cyclization with 4-methyl-cyclo-hexane-1-carb-oxy-lic acid. It crystallizes from 2-propanol in the triclinic space group P with a mol-ecule of the title compound and one of 2-propanol in the asymmetric unit. After the mol-ecular structure was clarified using NMR and LC/MS, the mol-ecular and crystalline arrangements were defined with SC-XRD. A Hirshfeld surface analysis was performed for a better understanding of the inter-molecular inter-actions. One strong (O-H⋯O) and three weak [C-H⋯F (intra-molecular) and two C-H⋯O] hydrogen bonds were found. The contributions of short contacts to the Hirshfeld surface were estimated using two-dimensional fingerprint plots showing that O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts are the most significant for the title compound and O⋯H for the 2-propanol. The crystal structure appears to have isotropically packed tetra-mers containing two mol-ecules of the title compound and two mol-ecules of 2-propanol as the building unit according to analysis of the distribution of pairwise inter-action energies. A mol-ecular docking study was carried out to evaluate the inter-actions of the title compound with the active centers of macromolecules corresponding to viral targets, namely, anti-hepatitis B activity [HBV, capsid Y132A mutant (VCID 8772) PDB ID: 5E0I] and anti-COVID-19 main protease activity (PDB ID: 6LU7). The data obtained revealed a noticeable affinity towards them that exceeded that of the reference ligands.

3.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 9): 890-896, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36072518

ABSTRACT

The title compound, C24H26N2O4S, can be obtained via two synthetic routes. According to our investigations, the most suitable way is by the reaction of ethyl 2-bromo-acetate with sodium tosyl-sulfinate in dry DMF. It was crystallized from methanol into the monoclinic P21/n space group with a single mol-ecule in the asymmetric unit. Hirshfeld surface analysis was performed to define the hydrogen bonds and analysis of the two-dimensional fingerprint plots was used to distinguish the different types of inter-actions. Two very weak non-classical C-H⋯O hydrogen bonds were found and the contributions of short contacts to the Hirshfeld surface were determined. Mol-ecules form an isotropic network of inter-molecular inter-actions according to an analysis of the pairwise inter-action energies. A mol-ecular docking study evaluated the inter-actions in the title compound with the active centers of macromolecules of bacterial targets (Staphylococcus aureus DNA Gyrase PDB ID: 2XCR, Mycobacterium tuberculosis topoisomerase II PDB ID: 5BTL, Streptococcus pneumoniae topoisomerase IV PDB ID: 4KPF) and revealed high affinity towards them that exceeded the reference anti-biotics of the fluoro-quinolone group.

4.
ACS Omega ; 7(21): 17544-17554, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35664581

ABSTRACT

Three polymorphic structures of mefenamic acid, which is a very popular drug, have been studied using quantum chemical methods. It has been shown that the centrosymmetric dimer formed due to two O-H···O hydrogen bonds is a complex building unit in all of the polymorphic structures under study. On the basis of an analysis of the pairwise interaction energies between molecules, the polymorphic forms I and II are classified as columnar-layered while the polymorphic form III has a columnar structure. The stabilities of the three polymorphic forms of mefenamic acid under ambient conditions (I > II > III) correlate with the degree of anisotropy of the interaction energies between columns (primary basic structural motifs) formed due to stacking interactions. The shear deformation modeling of strongly bound layers in all of the polymorphic structures has not revealed any possibility for deformation of the crystal structure. The construction of the shift energy profiles and calculation of the energy barriers for the displacement along the (100) crystallographic plane in the [100], [010], and [011] crystallographic directions make it possible to explain the experimental data obtained for commercially available polymorphic structure I in a diamond anvil cell. The absence of any local minimum near the starting point on the shift energy profile and the extremely high energy barrier can be considered as criteria for the impossibility of a crystal structure deformation under pressure.

SELECTION OF CITATIONS
SEARCH DETAIL
...