Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Struct Biol ; 160(1): 83-92, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17825580

ABSTRACT

Lysozymes from family 22 of glycoside hydrolases are usually part of the defense system against bacteria. However in ruminant artiodactyls and saprophagous insects, lysozymes are involved in the digestion of bacteria. Here, we report the first crystallographic structure of a digestive lysozyme in its native and complexed forms, the structure of lysozyme 1 from Musca domestica larvae midgut (MdL1). Structural and biochemical data presented for MdL1 are analyzed in light of digestive lysozymes' traits. The structural core is similar, but a careful analysis of a structural alignment generated with other lysozymes c reveals that significant differences occur in coil regions. The loop from MdL1 defined by residues 98-100 has one deletion previous to residue Gln100, which leads to a less exposed conformation and might justify the resistance to proteolysis observed for MdL1. In addition, Gln100 is directly involved in a few hydrogen bonds to the ligand in a yet unobserved substrate binding mode. The pK(a)s of the MdL1 catalytic residues (Glu32 and Asp50) are lower (6.40 and 3.09, respectively) than those from Gallus gallus egg lysozyme (GgL, hen egg white lysozyme-HEWL) (6.61 and 3.85, respectively). A unique feature of MdL1 is a hydrogen bond between Thr107 Ogamma and Glu32 carboxylate group, which combined with the presence of Ser106 contributes to decrease the pK(a) of Glu32. Furthermore, in MdL1 the presence of Asn46 preventing the occurrence of an electrostatic repulsion with Asp50 and the increment in the solvent exposition of Asp50 due to Pro42 insertion contribute to reduce the pK(a) of Asp50. These structural elements affecting the pK(a)s of the catalytic residues should contribute to the acidic pH optimum presented by MdL1.


Subject(s)
Muramidase/chemistry , Amino Acid Sequence , Animals , Catalytic Domain , Chromatography, Gel , Crystallography , Enzyme Stability , Houseflies , Hydrogen Bonding , Hydrogen-Ion Concentration , Models, Molecular , Molecular Sequence Data , Muramidase/metabolism , Protein Conformation , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...