Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 149(1): 14-22, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16865092

ABSTRACT

BACKGROUND AND PURPOSE: Atorvastatin is an inhibitor of the enzyme 3-hydroxyl-3-methylglutaryl coenzyme A reductase used to prevent coronary heart disease. We have studied the analgesic effect of atorvastatin in inflammatory models in which a sequential release of mediators (bradykinin, (BK), tumour necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta) and the chemokine, KC/CXCL) links the stimulus with release of directly acting hypernociceptive mediators such as prostaglandin E(2) (PGE(2)). EXPERIMENTAL APPROACH: The effects of orally administered atorvastatin on inflammatory mechanical hypernociception in mouse paws were evaluated with an electronic pressure-meter. Cytokines and PGE(2) were measured by ELISA and RIA. KEY RESULTS: Treatment with atorvastatin for 3 days dose-dependently reduced hypernociception induced by lipopolysaccharide (LPS) or that following antigen challenge in sensitized animals. Atorvastatin pre-treatment reduced hypernociception induced by bradykinin and cytokines (TNF-alpha, IL-1beta and KC), and the release of IL-1beta and PGE(2) in paw skin, induced by lipopolysaccharide. The antinociceptive effect of atorvastatin on LPS-induced hypernociception was prevented by mevalonate co-treatment without affecting serum cholesterol levels. Hypernociception induced by PGE(2) was inhibited by atorvastatin, suggesting intracellular antinociceptive mechanisms for atorvastatin. The antinociceptive effect of atorvastatin upon LPS- or PGE(2)-induced hypernociception was prevented by non-selective inhibitors of nitric oxide synthase (NOS) but not by selective inhibition of inducible NOS or in mice lacking this enzyme. CONCLUSIONS AND IMPLICATIONS: Antinociceptive effects of atorvastatin depend on inhibition of cytokines and prostanoid production and on stimulation of NO production by constitutive NOS. Our study suggests that statins may constitute a novel class of analgesic drugs.


Subject(s)
Heptanoic Acids/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Inflammation/complications , Pyrroles/pharmacology , Animals , Atorvastatin , Bradykinin/pharmacology , Cholesterol/blood , Cytokines/pharmacology , Dinoprostone/metabolism , Enzyme Inhibitors/pharmacology , Hydroxymethylglutaryl CoA Reductases/physiology , Hyperalgesia/prevention & control , Interleukin-1/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Nitric Oxide Synthase/antagonists & inhibitors , Pain Measurement/drug effects , Skin/drug effects , Skin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...