Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Neural Syst ; 30(4): 2050013, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32114841

ABSTRACT

Emotion estimation systems based on brain and physiological signals such as electro encephalography (EEG), blood-volume pressure (BVP), and galvanic skin response (GSR) are gaining special attention in recent years due to the possibilities they offer. The field of human-robot interactions (HRIs) could benefit from a broadened understanding of the brain and physiological emotion encoding, together with the use of lightweight software and cheap wearable devices, and thus improve the capabilities of robots to fully engage with the users emotional reactions. In this paper, a previously developed methodology for real-time emotion estimation aimed for its use in the field of HRI is tested under realistic circumstances using a self-generated database created using dynamically evoked emotions. Other state-of-the-art, real-time approaches address emotion estimation using constant stimuli to facilitate the analysis of the evoked responses, remaining far from real scenarios since emotions are dynamically evoked. The proposed approach studies the feasibility of the emotion estimation methodology previously developed, under an experimentation paradigm that imitates a more realistic scenario involving dynamically evoked emotions by using a dramatic film as the experimental paradigm. The emotion estimation methodology has proved to perform on real-time constraints while maintaining high accuracy on emotion estimation when using the self-produced dynamically evoked emotions multi-signal database.


Subject(s)
Cerebral Cortex/physiology , Electroencephalography/methods , Emotions/physiology , Evoked Potentials/physiology , Galvanic Skin Response/physiology , Heart Rate/physiology , Signal Processing, Computer-Assisted , Adult , Databases, Factual , Humans
2.
Front Comput Neurosci ; 13: 80, 2019.
Article in English | MEDLINE | ID: mdl-31849630

ABSTRACT

Affective human-robot interaction requires lightweight software and cheap wearable devices that could further this field. However, the estimation of emotions in real-time poses a problem that has not yet been optimized. An optimization is proposed for the emotion estimation methodology including artifact removal, feature extraction, feature smoothing, and brain pattern classification. The challenge of filtering artifacts and extracting features, while reducing processing time and maintaining high accuracy results, is attempted in this work. First, two different approaches for real-time electro-oculographic artifact removal techniques are tested and compared in terms of loss of information and processing time. Second, an emotion estimation methodology is proposed based on a set of stable and meaningful features, a carefully chosen set of electrodes, and the smoothing of the feature space. The methodology has proved to perform on real-time constraints while maintaining high accuracy on emotion estimation on the SEED database, both under subject dependent and subject independent paradigms, to test the methodology on a discrete emotional model with three affective states.

3.
Front Neuroinform ; 11: 77, 2017.
Article in English | MEDLINE | ID: mdl-29375359

ABSTRACT

Machine learning and artificial intelligence have strong roots on principles of neural computation. Some examples are the structure of the first perceptron, inspired in the retina, neuroprosthetics based on ganglion cell recordings or Hopfield networks. In addition, machine learning provides a powerful set of tools to analyze neural data, which has already proved its efficacy in so distant fields of research as speech recognition, behavioral states classification, or LFP recordings. However, despite the huge technological advances in neural data reduction of dimensionality, pattern selection, and clustering during the last years, there has not been a proportional development of the analytical tools used for Time-Frequency (T-F) analysis in neuroscience. Bearing this in mind, we introduce the convenience of using non-linear, non-stationary tools, EMD algorithms in particular, for the transformation of the oscillatory neural data (EEG, EMG, spike oscillations…) into the T-F domain prior to its analysis with machine learning tools. We support that to achieve meaningful conclusions, the transformed data we analyze has to be as faithful as possible to the original recording, so that the transformations forced into the data due to restrictions in the T-F computation are not extended to the results of the machine learning analysis. Moreover, bioinspired computation such as brain-machine interface may be enriched from a more precise definition of neuronal coding where non-linearities of the neuronal dynamics are considered.

SELECTION OF CITATIONS
SEARCH DETAIL
...