Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 3790, 2017 06 19.
Article in English | MEDLINE | ID: mdl-28630430

ABSTRACT

Pyrazinamide (PZA) is an important first-line drug in all existing and new tuberculosis (TB) treatment regimens. PZA-resistance in M. tuberculosis is increasing, especially among M/XDR cases. Noted issues with PZA Drug Susceptibility Testing (DST) have driven the search for alternative tests. This study provides a comprehensive assessment of PZA molecular diagnostics in M/XDR TB cases. A set of 296, mostly XDR, clinical M. tuberculosis isolates from four countries were subjected to DST for eight drugs, confirmatory Wayne's assay, and whole-genome sequencing. Three genes implicated in PZA resistance, pncA, rpsA, and panD were investigated. Assuming all non-synonymous mutations cause resistance, we report 90% sensitivity and 65% specificity for a pncA-based molecular test. The addition of rpsA and panD potentially provides 2% increase in sensitivity. Molecular heterogeneity in pncA was associated with resistance and should be evaluated as a diagnostic tool. Mutations near the N-terminus and C-terminus of PZase were associated with East-Asian and Euro-American lineages, respectively. Finally, Euro-American isolates are most likely to have a wild-type PZase and escape molecular detection. Overall, the 8-10% resistance without markers may point to alternative mechanisms of resistance. Confirmatory mutagenesis may improve the disconcertingly low specificity but reduce sensitivity since not all mutations may cause resistance.


Subject(s)
Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Mutation , Mycobacterium tuberculosis/genetics , DNA Mutational Analysis , Humans , Pyrazinamide
2.
Antimicrob Agents Chemother ; 60(7): 3994-4004, 2016 07.
Article in English | MEDLINE | ID: mdl-27090176

ABSTRACT

Molecular diagnostic assays, with their ability to rapidly detect resistance-associated mutations in bacterial genes, are promising technologies to control the spread of drug-resistant tuberculosis (DR-TB). Sequencing assays provide detailed information for specific gene regions and can help diagnostic assay developers prioritize mutations for inclusion in their assays. We performed pyrosequencing of seven Mycobacterium tuberculosis gene regions (katG, inhA, ahpC, rpoB, gyrA, rrs, and eis) for 1,128 clinical specimens from India, Moldova, and South Africa. We determined the frequencies of each mutation among drug-resistant and -susceptible specimens based on phenotypic drug susceptibility testing results and examined mutation distributions by country. The most common mutation among isoniazid-resistant (INH(r)) specimens was the katG 315ACC mutation (87%). However, in the Eastern Cape, INH(r) specimens had a lower frequency of katG mutations (44%) and higher frequencies of inhA (47%) and ahpC (10%) promoter mutations. The most common mutation among rifampin-resistant (RIF(r)) specimens was the rpoB 531TTG mutation (80%). The mutation was common in RIF(r) specimens in Mumbai (83%) and Moldova (84%) but not the Eastern Cape (17%), where the 516GTC mutation appeared more frequently (57%). The most common mutation among fluoroquinolone-resistant specimens was the gyrA 94GGC mutation (44%). The rrs 1401G mutation was found in 84%, 84%, and 50% of amikacin-resistant, capreomycin-resistant, and kanamycin (KAN)-resistant (KAN(r)) specimens, respectively. The eis promoter mutation -12T was found in 26% of KAN(r) and 4% of KAN-susceptible (KAN(s)) specimens. Inclusion of the ahpC and eis promoter gene regions was critical for optimal test sensitivity for the detection of INH resistance in the Eastern Cape and KAN resistance in Moldova. (This study has been registered at ClinicalTrials.gov under registration number NCT02170441.).


Subject(s)
Tuberculosis, Multidrug-Resistant/genetics , Bacterial Proteins/genetics , Capreomycin/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Isoniazid/therapeutic use , Kanamycin/therapeutic use , Microbial Sensitivity Tests , Moldova , Mutation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Rifampin/therapeutic use , South Africa , Tuberculosis , Tuberculosis, Multidrug-Resistant/drug therapy
3.
Int J Tuberc Lung Dis ; 19(4): 420-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25859997

ABSTRACT

OBJECTIVE: To develop and evaluate rapid, molecular-based drug susceptibility testing (DST) for extensively drug-resistant tuberculosis (XDR-TB), we assembled a phenotypically and genotypically diverse collection of Mycobacterium tuberculosis isolates from patients evaluated for drug resistance in four high-burden countries. METHODS: M. tuberculosis isolates from India (n = 111), Moldova (n = 90), the Philippines (n = 96), and South Africa (n = 103) were selected from existing regional and national repositories to maximize phenotypic diversity for resistance to isoniazid, rifampin (RMP), moxifloxacin, ofloxacin, amikacin, kanamycin, and capreomycin. MGIT™ 960 was performed on viable isolates in one laboratory using standardized procedures and drug concentrations. Genetic diversity within drug resistance phenotypes was assessed. RESULTS: Nineteen distinct phenotypes were observed among 400 isolates with complete DST results. Diversity was greatest in the Philippines (14 phenotypes), and least in South Africa (9 phenotypes). Nearly all phenotypes included multiple genotypes. All sites provided isolates resistant to injectables but susceptible to fluoroquinolones. Many patients were taking drugs to which their disease was resistant. DISCUSSION: Diverse phenotypes for XDR-TB-defining drugs, including resistance to fluoroquinolones and/or injectable drugs in RMP-susceptible isolates, indicate that RMP susceptibility does not ensure effectiveness of a standard four-drug regimen. Rapid, low-cost DST assays for first- and second-line drugs are thus needed.


Subject(s)
Antitubercular Agents/therapeutic use , Extensively Drug-Resistant Tuberculosis/drug therapy , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Genotype , Humans , India , Male , Microbial Sensitivity Tests , Middle Aged , Moldova , Phenotype , Philippines , South Africa , Sputum/microbiology , Young Adult
4.
Int J Mycobacteriol ; 4(Suppl 1): 51-52, 2015 03.
Article in English | MEDLINE | ID: mdl-27695670

ABSTRACT

BACKGROUND: By using whole genome sequencing (WGS), researchers are beginning to understand the genetic diversity of Mycobacterium tuberculosis (MTB) and its consequences for the diagnosis of multidrug-resistant tuberculosis (MDR-TB) on a genomic scale. The Global Consortium for Drug-resistant TB Diagnostics (GCDD) conducted a genome scale variant analyses of 366 clinical MTB genomes (mostly MDR/XDR [extensively drug resistant]) from four countries in order to inform the development of rapid molecular diagnostics. This project has been extended by performing an evolutionary analysis of isoniazid (INH)-resistant isolates for prognostic purposes. METHODS: 151 (130 INHR, 21 INHS) clinical MTB isolates from India (19: 17 INHR, 2 INHS), Moldova (48: 42 INHR, 6 INHS), the Philippines (26: 20 INHR, 6 INHS), and South Africa (58: 51 INHR, 7 INHS) were included in this study. INH drug susceptibility was determined by using MGIT 960 and WHO (World Health Organization)-recommended critical concentration of 0.1 mg/L. Isolates were sequenced using PacBio RS WGS platform. A genome-wide variant analysis was conducted using a proprietary pipeline (PacDAP) developed at San Diego State University. To infer the amino acid changes in katG that confer resistance, PAML was utilized to detect sites in silico that are under positive selection. The dN/dS method was used in combination with Bayes empirical Bayes to determine sites under positive selection and Chi-Squared analysis to determine the significance of the selected sites. RESULTS: PacDAP variant analysis revealed 22 novel catalase-peroxidase (katG product) mutations. Of these, 14 were single nucleotide polymorphisms, while 8 novel mutations appeared in combination with katG S315T and/or with inhA promoter C-15T. These SNPs have not been previously reported. Additionally, 11 previously observed, but uncommon, katG mutations were also observed in these clinical isolates. These results suggest that 17 amino acids in the enzyme are under positive selective pressure; most significantly in South Africa and the Philippines. No selective pressure on codons other than 315 was observed in isolates from Moldova. Due to the low number of isolates from India, the significance of the sites under positive selection was low and no prediction for India could be made based on this study. CONCLUSIONS: Eleven of the 14 SNPs are resistance conferring, and it is believed that the remaining 8 combinatorial mutations are either compensatory in nature or, in combination with known SNPs, could increase resistance levels. Positive selection results indicate a diversifying evolutionary path to resistance more in line with long tail statistics and therefore indicate a departure from the traditional point mutation (or "hotspot") model that current molecular diagnostics are based on. Positive selection pressures indicate a future with elevated diagnostic and prognostic significance of the "long tail" (i.e., alternative mechanisms of resistance) and potentially diminishing significance of the canonical mutations (especially in South Africa and the Philippines), which could have significant future implications on narrowly targeting molecular diagnostics.


Subject(s)
Antitubercular Agents/therapeutic use , Bacterial Proteins/genetics , Catalase/genetics , Isoniazid/therapeutic use , Mycobacterium tuberculosis/genetics , Tuberculosis/diagnosis , Humans , India , Moldova , Mutation , Mycobacterium tuberculosis/isolation & purification , Philippines , Polymorphism, Single Nucleotide/genetics , Prognosis , Promoter Regions, Genetic/genetics , South Africa , Tuberculosis/microbiology , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/microbiology , Whole Genome Sequencing
5.
Artif Intell Med ; 18(2): 133-48, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10648847

ABSTRACT

The study described in this paper was undertaken to develop the ability to predict the response of sickle-cell patients to hydroxyurea (HU) therapy. We analyzed the effect of HU on the values of 23 parameters of 83 patients. A Student's t-test was used to confirm (Rodgers GP, Dover GJ, Noguchi CT, Schechter AN, Nienhuis AW. Hematologic responses of patients with sickle cell disease to treatment with hydroxyurea, N Engl J Med 1990;322;1037-44) at the 0. 001 level that treatment with HU increases the proportion of fetal hemoglobin (HbF), and the average corpuscular volume (MCV) of the red blood cells. Correlation analysis failed to establish a statistically significant relationship between any of the 23 parameters and the HbF response. Linear regression analysis also failed to predict a patient's response to HU. On the other hand, artificial neural network (ANN) pattern-recognition analysis of the 23 parameters predicts, with 86.6% accuracy, those patients that respond positively to HU and those that do not. Furthermore, we have found that the values of only 10 of the 23 parameters (listed in the body of this paper) are sufficient to train ANNs to predict which patients will respond to HU.


Subject(s)
Anemia, Sickle Cell/drug therapy , Hydroxyurea/therapeutic use , Neural Networks, Computer , Adolescent , Anemia, Sickle Cell/blood , Erythrocyte Volume , Female , Fetal Hemoglobin/analysis , Humans , Male
6.
Clin Diagn Lab Immunol ; 5(2): 146-59, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9521136

ABSTRACT

The complete assignment of the proton chemical shifts obtained by nuclear magnetic resonance (NMR) spectroscopy of de-O-acetylated glucuronoxylomannans (GXMs) from Cryptococcus neoformans permitted the high-resolution determination of the total structure of any GXM. Six structural motifs based on an alpha-(1-->3)-mannotriose substituted with variable quantities of 2-O-beta- and 4-O-beta-xylopyranosyl and 2-O-beta-glucopyranosyluronic acid were identified. The chemical shifts of only the anomeric protons of the mannosyl residues served as structure reporter groups (SRG) for the identification and quantitation of the six triads present in any GXM. The assigned protons for the mannosyl residues resonated at clearly distinguishable positions in the spectrum and supplied all the information essential for the assignment of the complete GXM structure. This technique for assigning structure is referred to as the SRG concept. The SRG concept was used to analyze the distribution of the six mannosyl triads of GXMs obtained from 106 isolates of C. neoformans. The six mannosyl triads occurred singularly or in combination with one or more of the other triads. The identification and quantitation of the SRG were simplified by using a computer-simulated artificial neural network (ANN) to automatically analyze the SRG region of the one-dimensional proton NMR spectra. The occurrence and relative distribution of the six mannosyl triads were used to chemotype C. neoformans on the basis of subtle variations in GXM structure determined by analysis of the SRG region of the proton NMR spectrum by the ANN. The data for the distribution of the six SRGs from GXMs of 106 isolates of C. neoformans yielded eight chemotypes, Chem1 through Chem8.


Subject(s)
Cryptococcus neoformans/classification , Polysaccharides/analysis , Bacterial Typing Techniques , Carbohydrate Sequence , Computer Simulation , Cryptococcus neoformans/chemistry , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...