Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 15275, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37714951

ABSTRACT

A 3D-supramolecular nickel integrated Ni-SDZ complex was synthesized using sodium salt of sulfadiazine as the ligand and nickel(II) acetate as the metal salt using a condensation process and slow evaporation approach to growing the single crystal. The metal complex was characterized for its composition, functional groups, surface morphology as well as complex 3D structure, by resorting to various analytical techniques. The interacting surface and stability as well as reactivity of the complex were carried out using the DFT platform. From ADMET parameters, human Intestinal Absorbance data revealed that the compound has the potential to be well absorbed, and also Ni-SDZ complex cannot cross the blood-brain barrier (BBB). Additionally, the complex's DNA binding affinity and in-vivo and in-vitro cytotoxic studies were explored utilizing UV-Vis absorbance titration, viscosity measurements, and S. pombe cells and brine shrimp lethality tests. In visible light radiation, the Ni-SDZ complex displayed exceptional photo-degradation characteristics of approximately 70.19% within 70 min against methylene blue (MB).


Subject(s)
Nickel , Sulfadiazine , Humans , Sulfadiazine/pharmacology , Light , Methylene Blue , DNA
2.
J Biomol Struct Dyn ; : 1-16, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37491860

ABSTRACT

Newly synthesized dinuclear crystalline polymer, the silver complex of bidentate Sulfamethoxazole (Ag-SMX) in the presence of secondary ligand pyrrolidine has been characterized by elemental, spectral (1H-NMR spectra, FT-IR spectra, UV-Vis spectra.), powder XRD, and single-crystal X-ray diffraction (single-crystal) analysis. The synthesis molecular structure of the dinuclear [Ag2(C10H10N3O3S)2(C4H8N)2]n complex reveals a one-dimensional polymeric chain with seesaw geometry (τ4 = 0.71): two silvers interlink each other by argentophilic interaction with Ag1…Ag2 separation distance of 3.0047(6) Å. The Hirshfeld surfaces (HS) and 2D fingerprint plots were used to examine the interconnects in the crystal packing. Molecule properties including MEP, MPA, HOMO-LUMO energy, and global reactivity descriptor parameters were computed to understand the molecule's stability. From ADMET parameters, human Intestinal Absorbance data revealed that the compound has the potential to be well absorbed, and also Ag-smx complex cannot cross the blood-brain barrier (BBB). The capacity of the silver complex to interact with CtDNA was investigated using absorption spectroscopy and viscosity tests. The interaction between CT-DNA reveals that the Ag-SMX complex exhibits the strongest binding affinity among all known sulfonamide derivatives and their metal complexes. The silver complex has higher inhibitory action than the free SMX ligand, according to data from a panel of gram (+ve) and gram (-ve) organisms' minimum inhibitory concentrations. In vitro cytotoxicity investigation revealed that the IC50 value for Ag-SMX is 57.12 g/mL and for SMX is 100.90 g/mL against human lung cancer cell line (A549). This study revealed that, when compared to SMX free-ligand, Ag-SMX is the most effective in terms of cytotoxicity toward the human lung cancer cell line (A549 cell line). In under 120 min, the synthesized Ag-smx complex showed exceptional photo-degradation characteristics against methylene blue (MB) (10 ppm) in visible light radiation.Communicated by Ramaswamy H. Sarma.

3.
J Nanosci Nanotechnol ; 7(6): 1845-50, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17654952

ABSTRACT

Nanocomposites provide significantly increased modulus, thermal, and electrical properties when compared to traditional reinforced composites. Present work was undertaken to study the microstructure, thermal, and electrical properties of carbon nanostructured reinforced polymer matrix composites. Composites were made with carbon nanofibers and nanotubes (produced by CVD method) as reinforcement with thermoplastic polymers as matrices. The amount of nanoreinforcements was varied between 1 to 5 wt% in different matrices. The problems associated with dispersion of reinforcing materials have been studied. Dispersion of nanofillers in thermoplastics, microstructures, and thermal stability of the reinforced thermoplastics have been studied using SEM, DSC, and TGA. Experimental results show that small amount of carbon nanofillers present in thermoplastic matrix systems enhance the thermal, mechanical, and electrical properties of the composites.


Subject(s)
Crystallization/methods , Nanotechnology/methods , Nanotubes/chemistry , Nanotubes/ultrastructure , Elasticity , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Stress, Mechanical , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...