Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 483: 116832, 2024 02.
Article in English | MEDLINE | ID: mdl-38266872

ABSTRACT

Iron deficiency anemia is caused by many pathological conditions like chronic kidney disease (CKD), inflammation, malnutrition and gastrointestinal abnormality. Current treatments that are erythropoiesis stimulating agents (ESAs) and iron supplementation are inadequate and often lead to tolerance and/or toxicity. Desidustat, a prolyl hydroxylase (PHD) inhibitor, is clinically used for the treatment of anemia with CKD. In this study, we investigated the effect of desidustat on iron deficiency anemia (IDA). IDA was induced in C57BL6/J mice by iron deficient diet feeding. These mice were then treated with desidustat (15 mg/kg, PO) and FeSO4 (20 mg/kg) for five weeks and effect of the treatment on hematology, iron homeostasis, and bone marrow histology was observed. Effect of desidustat on iron metabolism in inflammation (LPS)-induced iron deficiency was also assessed. Both, Desidustat and FeSO4, increased MCV (mean corpuscular volume), MCH (mean corpuscular hemoglobin), hemoglobin, and HCT (hematocrit) in blood and increased iron in serum, liver, and spleen. Desidustat increased MCHC (mean corpuscular hemoglobin concentration) while FeSO4 treatment did not alter it. FeSO4 treatment significantly increased iron deposition in liver, and spleen, while desidustat increased iron in circulation and demonstrated efficient iron utilization. Desidustat increased iron absorption, serum iron and decreased hepcidin without altering tissue iron, while FeSO4 increased serum and tissue iron by increasing hepcidin in LPS-induced iron deficiency. Desidustat increased erythroid population, especially iron-dependent polychromatic normoblasts and orthochromatic normoblasts, while FeSO4 did not improve cell architecture. PHD inhibition by desidustat improved iron utilization in iron deficiency anemia, by efficient erythropoiesis.


Subject(s)
Anemia, Iron-Deficiency , Prolyl-Hydroxylase Inhibitors , Quinolones , Renal Insufficiency, Chronic , Mice , Animals , Anemia, Iron-Deficiency/drug therapy , Hepcidins/metabolism , Prolyl-Hydroxylase Inhibitors/pharmacology , Prolyl-Hydroxylase Inhibitors/therapeutic use , Lipopolysaccharides , Iron/metabolism , Inflammation/metabolism , Hemoglobins/analysis
2.
Article in English | MEDLINE | ID: mdl-35570856

ABSTRACT

Many anemic chronic kidney disease (CKD) patients are refractory to erythropoietin (EPO) effects due to inflammation, deranged iron utilization, and generation of EPO antibodies. This work assessed the effect of desidustat, an inhibitor of hypoxia inducible factor (HIF) prolyl hydroxylase (PHD), on EPO-refractory renal anemia. Sprague Dawley rats were made anemic by cisplatin (5 â€‹mg/kg, IP, single dose) and turpentine oil (5 â€‹mL/kg, SC, once a week). These rats were given recombinant human EPO (rhEPO, 1 â€‹µg/kg) and desidustat (15 or 30 â€‹mg/kg) for eight weeks. Separately, rhEPO (1-5 â€‹µg/kg) was given to anemic rats to sustain the normal hemoglobin levels and desidustat (15 â€‹mg/kg) for eight weeks. In another experiment, the anemic rats were treated rhEPO (5 â€‹µg/kg) for two weeks and then desidustat (15 â€‹mg/kg) for the next two weeks. Dosing of rhEPO was thrice a week, and for desidustat, it was on alternate days. Desidustat inhibited EPO-resistance caused by rhEPO treatment, decreased hepcidin, IL-6, IL-1ß, and increased iron and liver ferroportin. Desidustat reduced EPO requirement and anti-EPO antibodies. Desidustat also maintained normal hemoglobin levels after cessation of rhEPO treatment. Thus, novel prolyl hydroxylase inhibitor desidustat can treat EPO resistance via improved iron utilization and decreased inflammation.

3.
Eur J Med Chem ; 43(4): 683-93, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17611001

ABSTRACT

Design and synthesis of novel piperazinylaryloxazolidinones possessing heteroaryl groups are described and their in vitro antibacterial activities have been evaluated by MIC assay. Compounds (S)-N-[3-{3-fluoro-4-[4-[3-(5-nitrofuran-2-yl)-acryloyl]-piperazin-1-yl]-phenyl}-2-oxo-oxazolidin-5-yl-methyl] acetamide (6o), (S)-N-[3-{3-fluoro-4-[4-[3-(5-nitrothien-2-yl)-acryloyl]-piperazin-1-yl]-phenyl}-2-oxo-oxazolidin-5-yl-methyl] acetamide (6p) and N-oxide of (S)-N-[3-{3-fluoro-4-[4-[3-(5-nitrofuran-2-yl)-acryloyl]-piperazin-1-yl]-phenyl}-2-oxo-oxazolidin-5-yl-methyl] acetamide (9) showed superior antibacterial activities than linezolid and also active against the linezolid resistant Staphylococcus aureus strains.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Oxazolidinones/chemical synthesis , Oxazolidinones/pharmacology , Staphylococcus aureus/drug effects , Acetamides/pharmacology , Anti-Bacterial Agents/chemistry , Drug Design , Linezolid , Microbial Sensitivity Tests , Molecular Structure , Oxazolidinones/chemistry , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 17(18): 5227-32, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17624776

ABSTRACT

Design and synthesis of a few novel methylamino piperidinyl substituted oxazolidinones are reported. Their antibacterial activities have been evaluated in a MIC assay against broader panel of both susceptible and resistant Gram-positive strains. (S)-N-{3-[3-Fluoro-4-(methyl-{1-[3-(5-nitrofuran-2-yl)-acryloyl]-piperidin-4-yl}-amino)-phenyl]-2-oxo-oxazolidin-5-ylmethyl}-acetamide 4i has shown comparable antibacterial activity to linezolid and eperezolid in the MIC assay, additionally compound 4i showed good antibacterial activity with an in vitro MIC value of 2-4 microg/mL against linezolid resistant Staphylococcus aureus (linezolid 16 microg/mL).


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Oxazolidinones/chemical synthesis , Oxazolidinones/pharmacology , Piperidines/chemistry , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Oxazolidinones/chemistry
5.
Bioorg Med Chem Lett ; 17(7): 1924-9, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17276057

ABSTRACT

Synthesis and antibacterial activity of a number of substituted 4,5,6,7-tetrahydro-thieno[3,2-c]pyridine quinolones is reported. The antibacterial activities were evaluated in standard in vitro MIC assay method. Some of the compounds showed in vitro (MIC) antibacterial activity comparable to those of Gatifloxacin, Ciprofloxacin, and Sparfloxacin.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Chemistry, Pharmaceutical/methods , Pyridines/chemistry , Quinolones/chemistry , Quinolones/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Ciprofloxacin/pharmacology , Drug Design , Drug Evaluation, Preclinical , Drug Resistance, Microbial , Fluoroquinolones/pharmacology , Gatifloxacin , Microbial Sensitivity Tests , Models, Chemical , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...