Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Mol Genet Genomic Med ; 12(2): e2397, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38351708

ABSTRACT

BACKGROUND: 4q21 microdeletion syndrome is an emergent non-recurrent genomic disorder characterized by facial dysmorphy, progressive growth retardation, severe intellectual deficit, and absent or severely delayed speech. Deletions occur in clusters along 4q interstitial or terminal regions. 4q chromosomal aberrations are variable in type, size, and breakpoint. Genotype-phenotype correlation is a challenging task. The recurrent antenatal feature associated a posteriori with this syndrome is intrauterine growth retardation. There are very few precise antenatal descriptions of this syndrome. METHODS: We report here the first antenatal history of one of the largest deletion of this region. RESULTS: Our case harbored a 16.9 Mb deletion encompassing 135 protein coding genes including 20 OMIM morbid genes involved in neurological and cognitive abilities. Those breakpoints overlap two clusters of described microdeletion syndromes of cytogenetic band 4q13 and 4q21. CONCLUSION: From the end of the second trimester, set of call signs associated with this syndrome can be completed by: excess of amniotic fluid, mild growth retardation, short long bones, bony anomalies of the extremities, and bulging cheeks. So, emphasis should be placed on the examination of the extremities, and the face during the routine targeted prenatal ultrasound.


Subject(s)
Chromosome Deletion , Chromosome Disorders , Humans , Female , Pregnancy , Comparative Genomic Hybridization , Chromosome Disorders/genetics , Chromosome Disorders/diagnosis , Chromosome Aberrations , Syndrome , Fetal Growth Retardation/genetics
3.
Article in English | MEDLINE | ID: mdl-33754899

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a rare neurological disorder that causes degeneration of upper and lower motor neurons and their axons. ALS is mostly sporadic, but there are familial forms. In more than half of the familial forms, a pathogenic variant is found in one of the following genes: C9ORF72, SOD1, TDP-43, FUS, and VCP. SOD1 is the 2nd most common gene involved in genetic forms of ALS. Genotype-phenotype relationships are occasionally established in genetic forms of ALS associated with SOD1 mutations pathogenic variants. The c.281G > T (p.[G93V]) variant in SOD1 is associated with a rarely described and unexplained anticipation phenomenon. We report a large family from Martinique in whom ALS is associated with a c.281G > T (p.[G93V]) pathogenic variant in SOD1 and a statistically suggested anticipation. A whole-exome study and detection of CNVs (CoDESeq) from 3 affected members of this family revealed the presence of variants of uncertain signification (VUS) in other ALS genes. VUS in DCTN1 and NEFH were present in patients of the 2nd generation, and CNVs involving UBQLN2 and C21orf2 were found in the youngest case of the family.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , Humans , Martinique , Mutation/genetics , Superoxide Dismutase-1/genetics
4.
Hum Mutat ; 41(12): 2167-2178, 2020 12.
Article in English | MEDLINE | ID: mdl-33131162

ABSTRACT

Herein, we report the screening of a large panel of genes in a series of 80 fetuses with congenital heart defects (CHDs) and/or heterotaxy and no cytogenetic anomalies. There were 49 males (61%/39%), with a family history in 28 cases (35%) and no parental consanguinity in 77 cases (96%). All fetuses had complex CHD except one who had heterotaxy and midline anomalies while 52 cases (65%) had heterotaxy in addition to CHD. Altogether, 29 cases (36%) had extracardiac and extra-heterotaxy anomalies. A pathogenic variant was found in 10/80 (12.5%) cases with a higher percentage in the heterotaxy group (8/52 cases, 15%) compared with the non-heterotaxy group (2/28 cases, 7%), and in 3 cases with extracardiac and extra-heterotaxy anomalies (3/29, 10%). The inheritance was recessive in six genes (DNAI1, GDF1, MMP21, MYH6, NEK8, and ZIC3) and dominant in two genes (SHH and TAB2). A homozygous pathogenic variant was found in three cases including only one case with known consanguinity. In conclusion, after removing fetuses with cytogenetic anomalies, next-generation sequencing discovered a causal variant in 12.5% of fetal cases with CHD and/or heterotaxy. Genetic counseling for future pregnancies was greatly improved. Surprisingly, unexpected consanguinity accounts for 20% of cases with identified pathogenic variants.


Subject(s)
Fetus/abnormalities , Heart Defects, Congenital/genetics , Heterotaxy Syndrome/genetics , High-Throughput Nucleotide Sequencing , Cytogenetic Analysis , Family , Female , Heterozygote , Homozygote , Humans , Male , Mutation/genetics , Pedigree
6.
Hum Mutat ; 28(6): 563-70, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17295247

ABSTRACT

We studied a series of 42 cases of transposition of the great arteries (TGA), a complex heart defect (CHD) that is two times more prevalent in males than in females. A mutation in the X chromosome at the ZIC3 gene was found in two affected siblings (one male, one female) and their unaffected mother. A second factor, skewed X-inactivation pattern explained the discrepancy between the daughter/mother phenotype. In this family, the missense mutation (p.W255G) was found in the first zinc finger of ZIC3, a domain that is relatively specific to each of the five human ZIC genes. It was tested further along with two other mutations of this domain (p.C253S and p.H286R). In transfected 3T3 cells, mutants p.W255G and p.H286R expressed lower protein levels, and an increased protein degradation (p.W255G only). Moreover, mutants p.C253S and p.W255G had a decreased transcription activation of the TK-luciferase reporter gene. Nuclear translocation of the three ZIC3 mutants varied considerably depending on the experimental models. Finally, p.W255G and p.H286R showed diminished activities for both left-right axis disturbance and neural crest induction in Xenopus embryos. These results suggest that mutations in the first zinc finger of ZIC3 mildly affect several functions of the protein.


Subject(s)
Heart Defects, Congenital/genetics , Homeodomain Proteins/genetics , Mutation , Penetrance , Transcription Factors/genetics , Zinc Fingers/genetics , Amino Acid Sequence , Animals , DNA Mutational Analysis , Female , Genetic Carrier Screening , Genetic Diseases, X-Linked/diagnosis , Genetic Diseases, X-Linked/genetics , Heart Defects, Congenital/diagnosis , Homeodomain Proteins/biosynthesis , Humans , Male , Mice , Molecular Sequence Data , NIH 3T3 Cells , Pedigree , Sex Factors , Transcription Factors/biosynthesis , Transfection , Transposition of Great Vessels/genetics , X Chromosome Inactivation/genetics , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...