Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(5): e0197975, 2018.
Article in English | MEDLINE | ID: mdl-29791508

ABSTRACT

Huntington's disease (HD) age of onset (AO) is mainly determined by the length of the CAG repeat expansion in the huntingtin gene. The remaining AO variability has been attributed to other little-known factors. A factor that has been associated with other neurodegenerative diseases is arterial hypertension (AHT). The aim of this study is to evaluate the contribution of AHT to the AO of HD. We used data from a cohort of 630 European HD patients with adult onset collected by the REGISTRY project of the European Huntington's Disease Network. Multiple linear regression and ANOVA, controlling for the CAG repeat number of the expanded allele (CAGexp) of each patient, were performed to assess the association between the AHT condition and the AO of the motor symptoms (mAO). The results showed a significant association between AHT and mAO, especially when we only considered the patients diagnosed with AHT prior to manifesting any HD signs (pre-HD AHT). Remarkably, despite the low number of cases, those patients developed motor symptoms 5-8 years later than normotensive patients in the most frequent CAGexp range (40-44). AHT is an age-related condition and consequently, the age of the patient at the time of data collection could be a confounder variable. However, given that most pre-HD AHT patients included in our study had started treatment with antihypertensive drugs prior to the onset of HD, and that antihypertensive drugs have been suggested to confer a neuroprotective effect in other neurodegenerative diseases, raises the interest in elucidating the impact of AHT and/or AHT treatment in HD age of onset in further studies. A confirmation of our results in a larger sample set would open the possibility to significantly improve HD management.


Subject(s)
Huntington Disease/complications , Hypertension/complications , Age of Onset , Alleles , Female , Humans , Huntington Disease/epidemiology , Huntington Disease/genetics , Male , Middle Aged
2.
PLoS One ; 10(7): e0131573, 2015.
Article in English | MEDLINE | ID: mdl-26148071

ABSTRACT

Age of onset (AO) of Huntington disease (HD) is mainly determined by the length of the CAG repeat expansion (CAGexp) in exon 1 of the HTT gene. Additional genetic variation has been suggested to contribute to AO, although the mechanism by which it could affect AO is presently unknown. The aim of this study is to explore the contribution of candidate genetic factors to HD AO in order to gain insight into the pathogenic mechanisms underlying this disorder. For that purpose, two AO definitions were used: the earliest age with unequivocal signs of HD (earliest AO or eAO), and the first motor symptoms age (motor AO or mAO). Multiple linear regression analyses were performed between genetic variation within 20 candidate genes and eAO or mAO, using DNA and clinical information of 253 HD patients from REGISTRY project. Gene expression analyses were carried out by RT-qPCR with an independent sample of 35 HD patients from Basque Country Hospitals. We found suggestive association signals between HD eAO and/or mAO and genetic variation within the E2F2, ATF7IP, GRIN2A, GRIN2B, LINC01559, HIP1 and GRIK2 genes. Among them, the most significant was the association between eAO and rs2742976, mapping to the promoter region of E2F2 transcription factor. Furthermore, rs2742976 T allele patient carriers exhibited significantly lower lymphocyte E2F2 gene expression, suggesting a possible implication of E2F2-dependent transcriptional activity in HD pathogenesis. Thus, E2F2 emerges as a new potential HD AO modifier factor.


Subject(s)
Genes, Modifier/genetics , Huntington Disease/genetics , Polymorphism, Single Nucleotide/genetics , Adult , Age of Onset , Aged , Alleles , Exons/genetics , Female , Genotype , Humans , Male , Middle Aged , Trinucleotide Repeats/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...