Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 11(9): 754, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32934219

ABSTRACT

The identification of the essential role of cyclin-dependent kinases (CDKs) in the control of cell division has prompted the development of small-molecule CDK inhibitors as anticancer drugs. For many of these compounds, the precise mechanism of action in individual tumor types remains unclear as they simultaneously target different classes of CDKs - enzymes controlling the cell cycle progression as well as CDKs involved in the regulation of transcription. CDK inhibitors are also capable of activating p53 tumor suppressor in tumor cells retaining wild-type p53 gene by modulating MDM2 levels and activity. In the current study, we link, for the first time, CDK activity to the overexpression of the MDM4 (MDMX) oncogene in cancer cells. Small-molecule drugs targeting the CDK9 kinase, dinaciclib, flavopiridol, roscovitine, AT-7519, SNS-032, and DRB, diminished MDM4 levels and activated p53 in A375 melanoma and MCF7 breast carcinoma cells with only a limited effect on MDM2. These results suggest that MDM4, rather than MDM2, could be the primary transcriptional target of pharmacological CDK inhibitors in the p53 pathway. CDK9 inhibitor atuveciclib downregulated MDM4 and enhanced p53 activity induced by nutlin-3a, an inhibitor of p53-MDM2 interaction, and synergized with nutlin-3a in killing A375 melanoma cells. Furthermore, we found that human pluripotent stem cell lines express significant levels of MDM4, which are also maintained by CDK9 activity. In summary, we show that CDK9 activity is essential for the maintenance of high levels of MDM4 in human cells, and drugs targeting CDK9 might restore p53 tumor suppressor function in malignancies overexpressing MDM4.


Subject(s)
Breast Neoplasms/metabolism , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase 9/metabolism , Melanoma/metabolism , Proto-Oncogene Proteins/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Cycle Proteins/biosynthesis , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Drug Synergism , Humans , Imidazoles/pharmacology , MCF-7 Cells , Melanoma/genetics , Melanoma/pathology , Mice , Piperazines/pharmacology , Pluripotent Stem Cells/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-mdm2/biosynthesis , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Roscovitine/pharmacology , Sulfonamides/pharmacology , Transcription, Genetic , Transfection , Triazines/pharmacology
2.
Front Physiol ; 10: 390, 2019.
Article in English | MEDLINE | ID: mdl-31024344

ABSTRACT

Mdm2 and MdmX are related proteins serving in the form of the Mdm2 homodimer or Mdm2/MdmX heterodimer as an E3 ubiquitin ligase for the tumor suppressor p53. The dimerization is required for the E3 activity and is mediated by the conserved RING domains present in both proteins, but only the RING domain of Mdm2 can form homodimers efficiently. We performed a systematic mutational analysis of human Mdm2, exchanging parts of the RING with the corresponding MdmX sequence, to identify the molecular determinants of this difference. Mdm2 can also promote MdmX degradation, and we identified several mutations blocking it. They were located mainly at the Mdm2/E2 interface and did not disrupt the MdmX-Mdm2 interaction. Surprisingly, some mutations of the Mdm2/E2 interface inhibited MdmX degradation, which is mediated by the Mdm2/MdmX heterodimer, but did not affect p53 degradation, mediated by the Mdm2 homodimer. Only one mutant, replacing a conserved cysteine 449 with asparagine (C449N), disrupted the ability of Mdm2 to dimerize with MdmX. When we introduced the cysteine residue into the corresponding site in MdmX, the RING domain became capable of forming dimers with other MdmX molecules in vivo, suggesting that one conserved amino acid residue in the RINGs of Mdm2 and MdmX could serve as the determinant of the differential ability of these domains to form dimers and their E3 activity. In immunoprecipitations, however, the homodimerization of MdmX could be observed only when the asparagine residue was replaced with cysteine in both RINGs. This result suggested that heterocomplexes consisting of one mutated MdmX RING with cysteine and one wild-type MdmX RING with asparagine might be less stable, despite being readily detectable in the cell-based assay. Moreover, Mdm2 C449N blocked Mdm2-MdmX heterodimerization but did not disrupt the ability of Mdm2 homodimer to promote p53 degradation, suggesting that the effect of the conserved cysteine and asparagine residues on dimerization was context-specific. Collectively, our results indicate that the effects of individual exchanges of conserved residues between Mdm2 and MdmX RING domains might be context-specific, supporting the hypothesis that Mdm2 RING homodimers and Mdm2-MdmX heterodimers may not be entirely structurally equivalent, despite their apparent similarity.

3.
Angew Chem Int Ed Engl ; 58(4): 1062-1066, 2019 01 21.
Article in English | MEDLINE | ID: mdl-30569600

ABSTRACT

Reported is the identification of the furo[3,2-b]pyridine core as a novel scaffold for potent and highly selective inhibitors of cdc-like kinases (CLKs) and efficient modulators of the Hedgehog signaling pathway. Initially, a diverse target compound set was prepared by synthetic sequences based on chemoselective metal-mediated couplings, including assembly of the furo[3,2-b]pyridine scaffold by copper-mediated oxidative cyclization. Optimization of the subseries containing 3,5-disubstituted furo[3,2-b]pyridines afforded potent, cell-active, and highly selective inhibitors of CLKs. Profiling of the kinase-inactive subset of 3,5,7-trisubstituted furo[3,2-b]pyridines revealed sub-micromolar modulators of the Hedgehog pathway.


Subject(s)
Furans/chemistry , Hedgehog Proteins/chemistry , Protein Kinase Inhibitors/chemical synthesis , Pyridines/chemistry , Small Molecule Libraries/chemical synthesis , Binding Sites , Cell Survival/drug effects , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
4.
Hepatology ; 67(2): 636-650, 2018 02.
Article in English | MEDLINE | ID: mdl-28913935

ABSTRACT

Hepatocellular carcinomas (HCC) contain a subpopulation of cancer stem cells (CSCs), which exhibit stem cell-like features and are responsible for tumor relapse, metastasis, and chemoresistance. The development of effective treatments for HCC will depend on a molecular-level understanding of the specific pathways driving CSC emergence and stemness. MacroH2A1 is a variant of the histone H2A and an epigenetic regulator of stem-cell function, where it promotes differentiation and, conversely, acts as a barrier to somatic-cell reprogramming. Here, we focused on the role played by the histone variant macroH2A1 as a potential epigenetic factor promoting CSC differentiation. In human HCC sections we uncovered a significant correlation between low frequencies of macroH2A1 staining and advanced, aggressive HCC subtypes with poorly differentiated tumor phenotypes. Using HCC cell lines, we found that short hairpin RNA-mediated macroH2A1 knockdown induces acquisition of CSC-like features, including the growth of significantly larger and less differentiated tumors when injected into nude mice. MacroH2A1-depleted HCC cells also exhibited reduced proliferation, resistance to chemotherapeutic agents, and stem-like metabolic changes consistent with enhanced hypoxic responses and increased glycolysis. The loss of macroH2A1 increased expression of a panel of stemness-associated genes and drove hyperactivation of the nuclear factor kappa B p65 pathway. Blocking phosphorylation of nuclear factor kappa B p65 on Ser536 inhibited the emergence of CSC-like features in HCC cells knocked down for macroH2A1. Conclusion: The absence of histone variant macroH2A1 confers a CSC-like phenotype to HCC cells in vitro and in vivo that depends on Ser536 phosphorylation of nuclear factor kappa B p65; this pathway may hold valuable targets for the development of CSC-focused treatments for HCC. (Hepatology 2018;67:636-650).


Subject(s)
Carcinoma, Hepatocellular/pathology , Histones/physiology , Liver Neoplasms/pathology , Neoplastic Stem Cells/pathology , Cell Proliferation , Gene Expression Profiling , Hep G2 Cells , Humans , Phosphorylation , Transcription Factor RelA/metabolism
5.
PLoS One ; 12(10): e0185801, 2017.
Article in English | MEDLINE | ID: mdl-28973015

ABSTRACT

MdmX overexpression contributes to the development of cancer by inhibiting tumor suppressor p53. A switch in the alternative splicing of MdmX transcript, leading to the inclusion of exon 6, has been identified as the primary mechanism responsible for increased MdmX protein levels in human cancers, including melanoma. However, there are no approved drugs, which could translate these new findings into clinical applications. We analyzed the anti-melanoma activity of enoxacin, a fluoroquinolone antibiotic inhibiting the growth of some human cancers in vitro and in vivo by promoting miRNA maturation. We found that enoxacin inhibited the growth and viability of human melanoma cell lines much stronger than a structurally related fluoroquinolone ofloxacin, which only weakly modulates miRNA processing. A microarray analysis identified a set of miRNAs significantly dysregulated in enoxacin-treated A375 melanoma cells. They had the potential to target multiple signaling pathways required for cancer cell growth, among them the RNA splicing. Recent studies showed that interfering with cellular splicing machinery can result in MdmX downregulation in cancer cells. We, therefore, hypothesized that enoxacin could, by modulating miRNAs targeting splicing machinery, activate p53 in melanoma cells overexpressing MdmX. We found that enoxacin and ciprofloxacin, a related fluoroquinolone capable of promoting microRNA processing, but not ofloxacin, strongly activated wild type p53-dependent transcription in A375 melanoma without causing significant DNA damage. On the molecular level, the drugs promoted MdmX exon 6 skipping, leading to a dose-dependent downregulation of MdmX. Not only in melanoma, but also in MCF7 breast carcinoma and A2780 ovarian carcinoma cells overexpressing MdmX. Together, our results suggest that some clinically approved fluoroquinolones could potentially be repurposed as activators of p53 tumor suppressor in cancers overexpressing MdmX oncoprotein and that p53 activation might contribute to the previously reported activity of enoxacin towards human cancer cells.


Subject(s)
Alternative Splicing/drug effects , Enoxacin/pharmacology , Proto-Oncogene Proteins c-mdm2/genetics , Signal Transduction/drug effects , Tumor Suppressor Protein p53/genetics , Apoptosis/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/drug effects , Down-Regulation/drug effects , Female , Humans , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Ofloxacin/pharmacology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...