Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36236378

ABSTRACT

Reinforced concrete structures' (RCSs) ageing and early deterioration are some of the main challenges faced by the building sector today, and steel bar corrosion is one of the main problems. In this phenomenon, water and concrete's electric resistivity play a fundamental role. Therefore, developing sensor systems capable of estimating any variations in these parameters in real time and remotely would represent considerable progress in sustainably maintaining RCSs. Many types of sensors capable of estimating humidity variation and electrical resistivity in concrete currently exist, but the variability of these sensors' sensitivity can be extreme depending on several factors; for example, temperature or presence of ions and their incorporation into smart monitoring systems, which is difficult. As an alternative to today's sensors, this study centered on developing two estimation models by means of the response of a novel voltammetric stainless steel (SS) sensor. The estimation models were one of humidity variation and another of concrete's electric resistivity. These models were calibrated, fitted and validated. In the validation, both these models explained a percentage of variance over 80%.

2.
Materials (Basel) ; 14(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810603

ABSTRACT

The aim of this experimental work was to study the porous structure of Ultra-High-Performance Fibre-Reinforced Concretes (UH) made with different fibre volume contents (0%, 1%, 2%) under several curing conditions (laboratory environment, 20 °C, 60 °C, 90 °C), comparing the results with those recorded for ordinary, high strength and very high strength concretes. Scanning electron microscopy, mercury intrusion porosimetry, thermogravimetry, water absorption and oxygen permeability tests were carried out. The results showed a low portlandite content in UH (in the order of 75% lower than in concrete C50) and a low degree of hydration, but they rise with curing temperature. These concretes have a very fine porous structure, with a high concentration of pores on the nanoscale level, below 0.05 µm. Their porosity accessible to water is consequently around 7-fold lower than in conventional (C30), 6-fold lower than in high-strength (C50) and 4-fold lower than in very high-strength (C90) concretes. Their oxygen permeability is at least one order of magnitude lower than in C90, two orders of magnitude lower than in C50 and three orders of magnitude lower than in C30. The percentage of added steel fibre does not affect the UH porous structure.

3.
Materials (Basel) ; 13(22)2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33202538

ABSTRACT

The main objective of this study was to analyze the influence that the addition of finely ground hydrated lime has on chloride-induced reinforcement corrosion in eco-efficient concrete made with 50% cement replacement by fly ash. Six tests were carried out: mercury intrusion porosimetry, chloride migration, accelerated chloride penetration, electrical resistivity, and corrosion rate. The results show that the addition of 10-20% of lime to fly ash concrete did not affect its resistance to chloride penetration. However, the cementitious matrix density is increased by the pozzolanic reaction between the fly ash and added lime. As a result, the porosity and the electrical resistivity improved (of the order of 10% and 40%, respectively), giving rise to a lower corrosion rate (iCORR) of the rebars and, therefore, an increase in durability. In fact, after subjecting specimens to wetting-drying cycles in a 0.5 M sodium chloride solution for 630 days, corrosion is considered negligible in fly ash concrete with 10% or 20% lime (iCORR less than 0.2 µA/cm2), while in fly ash concrete without lime, corrosion was low (iCORR of the order of 0.3 µA/cm2) and in the reference concrete made with Portland cement, only the corrosion was high (iCORR between 2 and 3 µA/cm2).

4.
Materials (Basel) ; 12(7)2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30970542

ABSTRACT

The objective of the experimental work is to study the mechanical properties in self-compacting concretes (SCC) in which part of the limestone aggregate has been replaced by granulated blast furnace slag (GBFS) in different percentages ranging from 0% to 60%. The results show that at early ages the SCC with the largest content in slag tend to have lower compressive strengths due to the poor compacting of the aggregates, although in the long-term their strength increases due to the reactivity of the slag. In fact, at the age of 365 days, the mortars made with the substitution of 50% of cement by ground GBFS reach compressive strength similar to that of the mortar made with 100% of cement. The consumption of calcium hydroxide during the hydration of the GBFS and the formation of hydrated calcium silicate (CSH) improve the mechanical properties of the slag-paste interface. The new compounds formed by the hydration of anhydrous oxides of the GBFS improve the aggregate-paste transition zone. The chemical interaction between the dissolution of the cement pore and the GBFS ends up generating new compounds on its surface. The increasing hydration of the GBFS produces a greater amount of silica gel that polymerises, densifying the matrix and reducing the porosity, which improves the mechanical properties of the concrete and perhaps its durability. The topography of the particles and their interface are analysed with atomic force microscopy techniques to assess the morphology depending on the aggregate used. On the other hand, a study was carried out of the aggregate-paste interface with scanning electronic microscope at different ages. It can be seen that in the contours of the hydrated GBFS particles, a band or ring forms with the new reaction products. The results obtained strengthen the previous conclusions. The new hydrated compounds fill the reaction ring, introducing chemical bonds between the aggregate and the interface, occupying part of the original pores or substituting spaces occupied originally by large portlandite crystals, of lesser mechanical strength and easily leached. For all this, the benefit is twofold. On the one hand, use is made of industrial by-products and, on the other hand, part of the destruction of natural quarries to obtain the necessary raw materials is avoided.

5.
Environ Sci Pollut Res Int ; 25(26): 26643-26652, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30003483

ABSTRACT

More than half the world's population lives in cities that were designed with a complete disregard for nature. Then, it is vital that nature should be present in these spaces to provide ecological support for urban areas. Natural elements that are in these spaces should be designed with people's comfort in mind. This research explores the application of the PET and UTCI biometeorological comfort indices in urban microspaces, where the general environmental parameters of the city are not valid and each space must be measured individually. The research looked into the influence of the design of natural elements on improving comfort. The results show that in the children's playing spaces, the absence of thermal comfort and considerable thermal stress were detected in summer. This effect is more easily seen in the PET values. The benefits to comfort of having double layers of vegetation in the gardens have also been shown. The micro-droplets of water from the jets in the fountains are carried by the breeze and modify the human-biometeorological conditions around the fountains and reduce thermal stress. This improvement needs an appropriate design of the fountains and an awareness of the breeze patterns in these spaces.


Subject(s)
City Planning , Environment Design , Environmental Monitoring/methods , Parks, Recreational/organization & administration , Urban Renewal , Cities , Climate , Humans , Male , Mediterranean Region , Meteorology , Models, Theoretical , Seasons , Spain , Thermosensing
SELECTION OF CITATIONS
SEARCH DETAIL
...