Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 381(2255): 20220108, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37517438

ABSTRACT

The study of entanglement in systems composed of identical particles raises interesting challenges with far-reaching implications in both, our fundamental understanding of the physics of composite quantum systems, and our capability of exploiting quantum indistinguishability as a resource in quantum information theory. Impressive theoretical and experimental advances have been made in the last decades that bring us closer to a deeper comprehension and to a better control of entanglement. Yet, when it involves composites of indistinguishable quantum systems, the very meaning of entanglement, and hence its characterization, still finds controversy and lacks a widely accepted definition. The aim of the present paper is to introduce, within an accessible and self-contained exposition, the basic ideas behind one of the approaches advanced towards the construction of a coherent definition of entanglement in systems of indistinguishable particles, with focus on fermionic systems. We also inquire whether the corresponding tools developed for studying entanglement in identical-fermion systems can be exploited when analysing correlations in distinguishable-party systems, in which the complete information of the individual parts is not available. Further, we open the discussion on the broader problem of constructing a suitable framework that accommodates entanglement in the presence of generalized statistics. This article is part of the theme issue 'Identity, individuality and indistinguishability in physics and mathematics'.

2.
Entropy (Basel) ; 21(8)2019 Aug 07.
Article in English | MEDLINE | ID: mdl-33267483

ABSTRACT

A measure D [ t 1 , t 2 ] for the amount of dynamical evolution exhibited by a quantum system during a time interval [ t 1 , t 2 ] is defined in terms of how distinguishable from each other are, on average, the states of the system at different times. We investigate some properties of the measure D showing that, for increasing values of the interval's duration, the measure quickly reaches an asymptotic value given by the linear entropy of the energy distribution associated with the system's (pure) quantum state. This leads to the formulation of an entropic variational problem characterizing the quantum states that exhibit the largest amount of dynamical evolution under energy constraints given by the expectation value of the energy.

SELECTION OF CITATIONS
SEARCH DETAIL
...