Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(7): 5473-5501, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38554135

ABSTRACT

Proteolysis-Targeting Chimeras (PROTACs) are bifunctional molecules that bring a target protein and an E3 ubiquitin ligase into proximity to append ubiquitin, thus directing target degradation. Although numerous PROTACs have entered clinical trials, their development remains challenging, and their large size can produce poor drug-like properties. To overcome these limitations, we have modified our Coferon platform to generate Combinatorial Ubiquitination REal-time PROteolysis (CURE-PROs). CURE-PROs are small molecule degraders designed to self-assemble through reversible bio-orthogonal linkers to form covalent heterodimers. By modifying known ligands for Cereblon, MDM2, VHL, and BRD with complementary phenylboronic acid and diol/catechol linkers, we have successfully created CURE-PROs that direct degradation of BRD4 both in vitro and in vivo. The combinatorial nature of our platform significantly reduces synthesis time and effort to identify the optimal linker length and E3 ligase partner to each target and is readily amenable to screening for new targets.


Subject(s)
Nuclear Proteins , Transcription Factors , Proteolysis , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Ligands
2.
Curr Cancer Drug Targets ; 21(4): 306-325, 2021.
Article in English | MEDLINE | ID: mdl-33535953

ABSTRACT

Epigenetic modulation of gene expression is essential for tissue-specific development and maintenance in mammalian cells. Disruption of epigenetic processes, and the subsequent alteration of gene functions, can result in inappropriate activation or inhibition of various cellular signaling pathways, leading to cancer. Recent advancements in the understanding of the role of epigenetics in cancer initiation and progression have uncovered functions for DNA methylation, histone modifications, nucleosome positioning, and non-coding RNAs. Epigenetic therapies have shown some promise for hematological malignancies, and a wide range of epigenetic-based drugs are undergoing clinical trials. However, in a dynamic survival strategy, cancer cells exploit their heterogeneous population which frequently results in the rapid acquisition of therapy resistance. Here, we describe novel approaches in drug discovery targeting the epigenome, highlighting recent advances the selective degradation of target proteins using Proteolysis Targeting Chimera (PROTAC) to address drug resistance.


Subject(s)
Drug Resistance, Neoplasm , Molecular Targeted Therapy , Neoplasms , Proteolysis , Drug Discovery/methods , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Epigenome/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , Neoplasms/drug therapy , Neoplasms/genetics
3.
J Biol Chem ; 291(24): 12627-12640, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27044744

ABSTRACT

TNF-stimulated gene-6 (TSG-6) is a multifunctional protein secreted in response to pro-inflammatory stimuli by a wide range of cells, including neutrophils, monocytes, and endothelial cells. It has been shown to mediate anti-inflammatory and protective effects when administered in disease models, in part, by reducing neutrophil infiltration. Human TSG-6 inhibits neutrophil migration by binding CXCL8 through its Link module (Link_TSG6) and interfering with the presentation of CXCL8 on cell-surface glycosaminoglycans (GAGs), an interaction that is vital for the function of many chemokines. TSG-6 was also found to interact with chemokines CXCL11 and CCL5, suggesting the possibility that it may function as a broad specificity chemokine-binding protein, functionally similar to those encoded by viruses. This study was therefore undertaken to explore the ability of TSG-6 to regulate the function of other chemokines. Herein, we demonstrate that Link_TSG6 binds chemokines from both the CXC and CC families, including CXCL4, CXCL12, CCL2, CCL5, CCL7, CCL19, CCL21, and CCL27. We also show that the Link_TSG6-binding sites on chemokines overlap with chemokine GAG-binding sites, and that the affinities of Link_TSG6 for these chemokines (KD values 1-85 nm) broadly correlate with chemokine-GAG affinities. Link_TSG6 also inhibits chemokine presentation on endothelial cells not only through a direct interaction with chemokines but also by binding and therefore masking the availability of GAGs. Along with previous work, these findings suggest that TSG-6 functions as a pluripotent regulator of chemokines by modulating chemokine/GAG interactions, which may be a major mechanism by which TSG-6 produces its anti-inflammatory effects in vivo.


Subject(s)
Cell Adhesion Molecules/metabolism , Chemokines/metabolism , Endothelial Cells/metabolism , Glycosaminoglycans/metabolism , Animals , Binding Sites , Cell Adhesion , Cell Adhesion Molecules/genetics , Cell Line , Cell Movement , Cells, Cultured , Endothelial Cells/cytology , Heparin/metabolism , Humans , Models, Molecular , Mutation , Protein Binding , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...