Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Sci Nutr ; 70(7): 834-844, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30764676

ABSTRACT

The aim of this study was to examine the effects of α-lipoic acid (α-LA) on liver mitochondrial bioenergetics and oxidative status for 8 weeks in normal-healthy animals. A pair-fed group was included to differentiate between α-LA direct effects and those changes due to reduced food intake. α-LA decreased body weight gain, liver weight and insulin levels with no differences compared to its pair-fed group. α-LA significantly reduced energy efficiency, the activity of the electron transport chain complexes and induced a lower efficiency of oxidative phosphorylation with reduced ATP production. α-LA supplementation directly decreased plasma triglycerides (TGs), free fatty acids and ketone bodies levels. A significant reduction in hepatic TG content was also observed. A significant up-regulation of Cpt1a, Acadl and Sirt3, all ß-oxidation genes, along with a significant deacetylation of the forkhead transcription factor 3a (FOXO3A) was found in α-LA-treated animals. Thus, α-LA along with a standard chow diet has direct actions on lipid metabolism and liver by modulating mitochondrial function in normal-weight rats. These results should be taken into account when α-LA is administered or recommended to a healthy population.


Subject(s)
Carnitine O-Palmitoyltransferase/metabolism , Energy Metabolism , Forkhead Box Protein O3/metabolism , Liver/drug effects , Mitochondria/drug effects , Sirtuins/metabolism , Thioctic Acid/pharmacology , Animals , Blood Glucose , Carnitine O-Palmitoyltransferase/genetics , Fatty Acids, Nonesterified/blood , Forkhead Box Protein O3/genetics , Ketone Bodies/blood , Lipid Metabolism , Lipid Peroxidation/drug effects , Liver/metabolism , Male , Mitochondria/metabolism , Phosphorylation , Rats , Rats, Wistar , Sirtuins/genetics , Triglycerides/blood , Up-Regulation
2.
Cell Death Dis ; 5: e1179, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24743734

ABSTRACT

The pathogenic mechanisms underlying the progression of non-alcoholic fatty liver disease (NAFLD) are not fully understood. In this study, we aimed to assess the relationship between endoplasmic reticulum (ER) stress and autophagy in human and mouse hepatocytes during NAFLD. ER stress and autophagy markers were analyzed in livers from patients with biopsy-proven non-alcoholic steatosis (NAS) or non-alcoholic steatohepatitis (NASH) compared with livers from subjects with histologically normal liver, in livers from mice fed with chow diet (CHD) compared with mice fed with high fat diet (HFD) or methionine-choline-deficient (MCD) diet and in primary and Huh7 human hepatocytes loaded with palmitic acid (PA). In NASH patients, significant increases in hepatic messenger RNA levels of markers of ER stress (activating transcription factor 4 (ATF4), glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP)) and autophagy (BCN1) were found compared with NAS patients. Likewise, protein levels of GRP78, CHOP and p62/SQSTM1 (p62) autophagic substrate were significantly elevated in NASH compared with NAS patients. In livers from mice fed with HFD or MCD, ER stress-mediated signaling was parallel to the blockade of the autophagic flux assessed by increases in p62, microtubule-associated protein 2 light chain 3 (LC3-II)/LC3-I ratio and accumulation of autophagosomes compared with CHD fed mice. In Huh7 hepatic cells, treatment with PA for 8 h triggered activation of both unfolding protein response and the autophagic flux. Conversely, prolonged treatment with PA (24 h) induced ER stress and cell death together with a blockade of the autophagic flux. Under these conditions, cotreatment with rapamycin or CHOP silencing ameliorated these effects and decreased apoptosis. Our results demonstrated that the autophagic flux is impaired in the liver from both NAFLD patients and murine models of NAFLD, as well as in lipid-overloaded human hepatocytes, and it could be due to elevated ER stress leading to apoptosis. Consequently, therapies aimed to restore the autophagic flux might attenuate or prevent the progression of NAFLD.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Non-alcoholic Fatty Liver Disease/pathology , Animals , Autophagy/drug effects , Cell Line, Tumor , Demography , Diet, High-Fat , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Feeding Behavior , Female , Gene Silencing/drug effects , Hepatocytes/drug effects , Hepatocytes/pathology , Humans , Liver/pathology , Male , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Middle Aged , Palmitic Acid/pharmacology , Phagosomes/drug effects , Phagosomes/metabolism , Sirolimus/pharmacology , Transcription Factor CHOP/metabolism
3.
Diabetologia ; 55(10): 2759-2768, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22782287

ABSTRACT

AIMS/HYPOTHESIS: High-fat, high-sucrose diet (HF)-induced reactive oxygen species (ROS) levels are implicated in skeletal muscle insulin resistance and mitochondrial dysfunction. Here we investigated whether mitochondrial ROS sequestering can circumvent HF-induced oxidative stress; we also determined the impact of any reduced oxidative stress on muscle insulin sensitivity and mitochondrial function. METHODS: The Skulachev ion (plastoquinonyl decyltriphenylphosphonium) (SkQ), a mitochondria-specific antioxidant, was used to target ROS production in C2C12 muscle cells as well as in HF-fed (16 weeks old) male C57Bl/6 mice, compared with mice on low-fat chow diet (LF) or HF alone. Oxidative stress was measured as protein carbonylation levels. Glucose tolerance tests, glucose uptake assays and insulin-stimulated signalling were determined to assess muscle insulin sensitivity. Mitochondrial function was determined by high-resolution respirometry. RESULTS: SkQ treatment reduced oxidative stress in muscle cells (-23% p < 0.05), but did not improve insulin sensitivity and glucose uptake under insulin-resistant conditions. In HF mice, oxidative stress was elevated (56% vs LF p < 0.05), an effect completely blunted by SkQ. However, HF and HF+SkQ mice displayed impaired glucose tolerance (AUC HF up 33%, p < 0.001; HF+SkQ up 22%; p < 0.01 vs LF) and disrupted skeletal muscle insulin signalling. ROS sequestering did not improve mitochondrial function. CONCLUSIONS/INTERPRETATION: SkQ treatment reduced muscle mitochondrial ROS production and prevented HF-induced oxidative stress. Nonetheless, whole-body glucose tolerance, insulin-stimulated glucose uptake, muscle insulin signalling and mitochondrial function were not improved. These results suggest that HF-induced oxidative stress is not a prerequisite for the development of muscle insulin resistance.


Subject(s)
Dietary Fats/pharmacology , Insulin Resistance/physiology , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Plastoquinone/analogs & derivatives , Reactive Oxygen Species/metabolism , Animals , Free Radical Scavengers/pharmacology , Glucose/metabolism , In Vitro Techniques , Insulin/metabolism , Lipids/blood , Male , Mice , Mice, Inbred C57BL , Models, Animal , Muscle, Skeletal/drug effects , Oxidative Stress/drug effects , Oxidative Stress/physiology , Plastoquinone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...