Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732600

ABSTRACT

BACKGROUND: Exercise and the consumption of sugars result in a dysfunction of the intestinal barrier (IB). Here, we determined the effect of sugar in a natural matrix on the intestinal barrier after moderate (A) and intensive endurance exercise (B). METHOD: The IB function was determined before (pre) and after running (post), and 120 and 180 min after consuming the drink by measuring serum endotoxin concentrations (lipopolysaccharides-LPS), IL-6, CD14, and i-FABP. In study A, nonspecifically trained participants (n = 24, males and females, age 26 ± 4) ran for one hour at 80% of their individual anaerobic threshold (IAT). After finishing, the runners consumed, in a crossover setup, either 500 mL of water, diluted cloudy apple juice (test drink), or an identical drink (placebo) without the fruit juice matrix (FJM). In study B, the participants (n = 30, males and females, age 50 ± 9) completed an ultra-marathon run, were divided into groups, and consumed one of the above-mentioned drinks. RESULTS: Study A: Exercise resulted in a significant increase in serum LPS, i-FABP, and IL-6, which decreased fast after finishing. No impact of the different drinks on LPS i-FABP, or IL-6 could be observed, but there was an impact on CD14. Study B: The ultra-marathon resulted in a strong increase in serum LPS, which decreased fast after finishing in the water and test drink groups, but not in the placebo group. CONCLUSIONS: The consumed drinks did not affect the kinetics of IB regeneration after moderate exercise, but impacted CD14 serum concentrations, indicating possible beneficial effects of the FJM on the immune system. After an ultra-marathon, IB function regenerates very fast. The intake of sugar (placebo) seems to have had a negative impact on IB regeneration, which was diminished by the presence of the FJM.


Subject(s)
Cross-Over Studies , Fruit and Vegetable Juices , Interleukin-6 , Lipopolysaccharide Receptors , Malus , Marathon Running , Physical Endurance , Polyphenols , Humans , Male , Female , Adult , Middle Aged , Polyphenols/pharmacology , Polyphenols/administration & dosage , Physical Endurance/drug effects , Physical Endurance/physiology , Interleukin-6/blood , Lipopolysaccharide Receptors/blood , Marathon Running/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Lipopolysaccharides/blood , Fatty Acid-Binding Proteins/blood , Running/physiology , Young Adult
2.
Nutrients ; 16(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38794667

ABSTRACT

BACKGROUND: Various nutritional strategies are increasingly used in sports to reduce oxidative stress and promote recovery. Chokeberry is rich in polyphenols and can reduce oxidative stress. Consequently, chokeberry juices and mixed juices with chokeberry content are increasingly used in sports. However, the data are very limited. Therefore, this study investigates the effects of the short-term supplementation of a red fruit juice drink with chokeberry content or a placebo on muscle damage, oxidative status, and leg strength during a six-day intense endurance protocol. METHODS: Eighteen recreational endurance athletes participated in a cross-over high intensity interval training (HIIT) design, receiving either juice or a placebo. Baseline and post-exercise assessments included blood samples, anthropometric data, and leg strength measurements. RESULTS: A significant increase was measured in muscle damage following the endurance protocol in all participants (∆ CK juice: 117.12 ± 191.75 U/L, ∆ CK placebo: 164.35 ± 267.00 U/L; p = 0.001, η2 = 0.17). No group effects were detected in exercise-induced muscle damage (p = 0.371, η2 = 0.010) and oxidative status (p = 0.632, η2 = 0.000). The reduction in strength was stronger in the placebo group, but group effects are missing statistical significance (∆ e1RM juice: 1.34 ± 9.26 kg, ∆ e1RM placebo: -3.33 ± 11.49 kg; p = 0.988, η2 = 0.000). CONCLUSION: Although a reduction in strength can be interpreted for the placebo treatment, no statistically significant influence of chokeberry could be determined. It appears that potential effects may only occur with prolonged application and a higher content of polyphenols, but further research is needed to confirm this.


Subject(s)
Athletes , Cross-Over Studies , Fruit and Vegetable Juices , Muscle Strength , Physical Endurance , Polyphenols , Humans , Polyphenols/pharmacology , Male , Adult , Muscle Strength/drug effects , Physical Endurance/drug effects , Physical Endurance/physiology , Young Adult , Female , Oxidative Stress/drug effects , Leg/physiology , Double-Blind Method , Fruit/chemistry , Photinia/chemistry , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Exercise/physiology , Endurance Training/methods
3.
Mol Nutr Food Res ; 67(14): e2200518, 2023 07.
Article in English | MEDLINE | ID: mdl-37161586

ABSTRACT

SCOPE: The phytosteroid ecdysterone is present in spinach. In this study, the urinary elimination of ecdysterone and its metabolites in humans is investigated following spinach consumption of two different culinary preparations. METHODS AND RESULTS: Eight participants (four males, four females) ingested 950 (27.1) g sautéed spinach (average [±standard deviation (SD)]) and 912 (70.6) g spinach smoothie as second intervention after washout. Post-administration urines are analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). After intake of both preparations, ecdysterone and two metabolites, 14-deoxy-ecdysterone, and 14-deoxy-poststerone, are excreted in urine. The maximum concentration of ecdysterone is ranging from 0.09 to 0.41 µg mL-1 after sautéed spinach and 0.08-0.74 µg mL-1 after smoothie ingestion. The total excreted amount (mean% [±SD]) in the urine as a parent drug plus the metabolites is only 1.4 (1.0) for both sautéed spinach and smoothie. The apparent sex related differences in 14-deoxy-poststerone excretion will need further investigations. CONCLUSION: Only a small proportion of ecdysterone from spinach is excreted into urine. No significant differences are found in concentration and recovered amount (%) of ecdysterone, 14-deoxy-ecdysterone, and 14-deoxy-poststerone in urine between sautéed spinach and smoothie ingestion. A discrimination between ecdysterone from food or preparations will be challenging based on urinary concentrations only, at least for later post-administration samples.


Subject(s)
Spinacia oleracea , Tandem Mass Spectrometry , Male , Female , Humans , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Ecdysterone/urine
4.
Metabolites ; 12(11)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36422277

ABSTRACT

Moderate endurance exercise leads to an improvement in cardiovascular performance, stress resilience, and blood function. However, the influence of chronic endurance exercise over several hours or days is still largely unclear. We examined the influence of a non-stop 160.9/230 km ultramarathon on body composition, stress/cardiac response, and nutrition parameters. Blood samples were drawn before (pre) and after the race (post) and analyzed for ghrelin, insulin, irisin, glucagon, cortisol, kynurenine, neopterin, and total antioxidant capacity. Additional measurements included heart function by echocardiography, nutrition questionnaires, and body impedance analyses. Of the 28 included ultra-runners (7f/21m), 16 participants dropped out during the race. The remaining 12 finishers (2f/10m) showed depletion of antioxidative capacities and increased inflammation/stress (neopterin/cortisol), while energy metabolism (insulin/glucagon/ghrelin) remained unchanged despite a high negative energy balance. Free fat mass, protein, and mineral content decreased and echocardiography revealed a lower stroke volume, left end diastolic volume, and ejection fraction post race. Optimizing nutrition (high-density protein-rich diet) during the race may attenuate the observed catabolic and inflammatory effects induced by ultramarathon running. As a rapidly growing discipline, new strategies for health prevention and extensive monitoring are needed to optimize the athletes' performance.

6.
Nutrients ; 14(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35215463

ABSTRACT

It can be assumed that changes in the gut microbiota play a crucial role in the development of type 2 diabetes mellitus (T2DM). It is generally accepted that regular physical activity is beneficial for the prevention and therapy of T2DM. Therefore, this review analyzes the effects of exercise training on the gut microbiota composition and the intestinal barrier function in T2DM. The current literature shows that regular exercise can influence the gut microbiota composition and the intestinal barrier function with ameliorative effects on T2DM. In particular, increases in the number of short-chain fatty acid (SCFA)-producing bacteria and improvements in the gut barrier integrity with reduced endotoxemia seem to be key points for positive interactions between gut health and T2DM, resulting in improvements in low-grade systemic inflammation status and glycemic control. However, not all aspects are known in detail and further studies are needed to further examine the efficacy of different training programs, the role of myokines, SCFA-producing bacteria, and SCFAs in the relevant metabolic pathways. As microbial signatures differ in individuals who respond differently to exercise training programs, one scientific focus could be the development of computer-based methods for the personalized analysis of the gut microbiota in the context of a microbiota/microbiome-based training program.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Microbiota , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/therapy , Exercise , Fatty Acids, Volatile , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...