Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sleep Sci ; 15(Spec 2): 314-317, 2022.
Article in English | MEDLINE | ID: mdl-35371401

ABSTRACT

Objectives: The relationship between a college student's chronotype and body mass index (BMI) is important to understand for university decision makers who want to build healthy and inclusive academic communities. This study aimed to evaluate how a student's chronotype influences their BMI. Material and Methods: Participants were college students from Oral Roberts University (n=384) with a mean age of 18.94 years, a mean BMI of 24.7kg/m2, and a mean morningness-eveningness questionnaire (MEQ) score of 47.65. Results: BMI values were significantly correlated with both chronotype (r=-.11, ß=-.09, p=.03) and age (r=.12, ß=.53, p=.02). The rate at which BMI increased with age depended upon the student's chronotype (ß=.81-.005 / MEQ, p=.005). The later the chronotype, the higher the rate of increase. Race had no significant influence on MEQ or BMI values except in the case of students who identified as Black and female. These students were found, on average, to have significantly higher BMI values (p<.01). Conclusion: For college students, BMI tends to increase over time and at a rate that is dependent upon chronotype. The later the chronotype, the faster the rate at which BMI increases. BMI values were found to be significantly higher for Black females. However, this result is potentially spurious, as BMI does not take into account differences in body composition between genders and race/ethnicity groups.

2.
Nanoscale ; 12(35): 18214-18224, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32856624

ABSTRACT

We present the fabrication of platinum (Pt0) nanoparticle (ca. 3 nm average diameter) decorated vertically aligned graphene (VG) screen-printed electrodes (Pt/VG-SPE) and explore their physicochemical characteristics and electrocatalytic activity towards the hydrogen evolution reaction (HER) in acidic media (0.5 M H2SO4). The Pt/VG-SPEs exhibit remarkable HER activity with an overpotential (recorded at -10 mA cm-2) and Tafel value of 47 mV (vs. RHE) and 27 mV dec-1. These values demonstrate the Pt/VG-SPEs as significantly more electrocatalytic than a bare/unmodified VG-SPE (789 mV (vs. RHE) and 97 mV dec-1). The uniform coverage of Pt0 nanoparticles (ca. 3 nm) upon the VG-SPE support results in a low loading of Pt0 nanoparticles (ca. 4 µg cm-2), yet yields comparable HER activity to optimal Pt based catalysts reported in the literature, with the advantages of being comparatively cheap, highly reproducible and tailorable platforms for HER catalysis. In order to test any potential dissolution of Pt0 from the Pt/VG-SPE surface, which is a key consideration for any HER catalyst, we additively manufactured (AM) a bespoke electrochemical flow cell that allowed for the electrolyte to be collected at regular intervals and analysed via inductively coupled plasma optical emission spectroscopy (ICP-OES). The AM electrochemical cell can be rapidly tailored to a plethora of geometries making it compatible with any size/shape of electrochemical platform. This work presents a novel and highly competitive HER platform and a novel AM technique for exploring the extent of Pt0 nanoparticle dissolution upon the electrode surface, making it an essential study for those seeking to test the stability/catalyst discharge of their given electrochemical platforms.

SELECTION OF CITATIONS
SEARCH DETAIL
...