Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 25(19)2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39408999

ABSTRACT

Organic compounds with antibacterial and antiparasitic properties are gaining significance for biomedical applications. This study focuses on the solvent-free synthesis (green synthesis) of 1,4-naphthoquinone or 2,3-dichloro-1,4-naphthoquinone with different phenylamines using silica gel as an acid solid support. The study also includes in silico PASS predictions and the discovery of antibacterial and antiparasitic properties of phenylaminonaphthoquinone derivatives 1-12, which can be further applied in drug discovery and development. These activities were discussed in terms of molecular descriptors such as hydrophobicity, molar refractivity, and half-wave potentials. The in vitro antimicrobial potential of the synthesized compounds 1-12 was evaluated against a panel of six bacterial strains (three Gram-positive: Staphylococcus aureus, Proteus mirabilis, and Enterococcus faecalis; and three Gram-negative bacteria: Escherichia coli, Salmonella typhimurium, and Klebsiella pneumoniae). Six compounds (1, 3, 5, 7, 10, and 11) showed better activity toward S. aureus with MIC values between 3.2 and 5.7 µg/mL compared to cefazolin (MIC = 4.2 µg/mL) and cefotaxime (MIC = 8.9 µg/mL), two cephalosporin antibiotics. Regarding in vitro antiplasmodial activity, compounds 1 and 3 were the most active against the Plasmodium falciparum strain 3D7 (chloroquine-sensitive), displaying IC50 values of 0.16 and 0.0049 µg/mL, respectively, compared to chloroquine (0.33 µg/mL). In strain FCR-3 (chloroquine-resistant), most of the compounds showed good activity, with compounds 3 (0.12 µg/mL) and 11 (0.55 µg/mL) being particularly noteworthy. Additionally, docking studies were used to better rationalize the action and prediction of the binding modes of these compounds. Finally, absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions were performed.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Molecular Docking Simulation , Naphthoquinones , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Naphthoquinones/pharmacology , Naphthoquinones/chemistry , Naphthoquinones/chemical synthesis , Antiparasitic Agents/pharmacology , Antiparasitic Agents/chemical synthesis , Antiparasitic Agents/chemistry , Green Chemistry Technology/methods , Gram-Negative Bacteria/drug effects , Plasmodium falciparum/drug effects
2.
Molecules ; 28(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37298798

ABSTRACT

A series of 2-phenylamino-3-acyl-1,4-naphtoquinones were evaluated regarding their in vitro antiproliferative activities using DU-145, MCF-7 and T24 cancer cells. Such activities were discussed in terms of molecular descriptors such as half-wave potentials, hydrophobicity and molar refractivity. Compounds 4 and 11 displayed the highest antiproliferative activity against the three cancer cells and were therefore further investigated. The in silico prediction of drug likeness, using pkCSM and SwissADME explorer online, shows that compound 11 is a suitable lead molecule to be developed. Moreover, the expressions of key genes were studied in DU-145 cancer cells. They include genes involved in apoptosis (Bcl-2), tumor metabolism regulation (mTOR), redox homeostasis (GSR), cell cycle regulation (CDC25A), cell cycle progression (TP53), epigenetic (HDAC4), cell-cell communication (CCN2) and inflammatory pathways (TNF). Compound 11 displays an interesting profile because among these genes, mTOR was significantly less expressed as compared to control conditions. Molecular docking shows that compound 11 has good affinity with mTOR, unraveling a potential inhibitory effect on this protein. Due to the key role of mTOR on tumor metabolism, we suggest that impaired DU-145 cells proliferation by compound 11 is caused by a reduced mTOR expression (less mTOR protein) and inhibitory activity on mTOR protein.


Subject(s)
Antineoplastic Agents , Naphthoquinones , Neoplasms , Naphthoquinones/pharmacology , Molecular Docking Simulation , Cell Line, Tumor , Cell Proliferation , Apoptosis , TOR Serine-Threonine Kinases/metabolism , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor
3.
Molecules ; 27(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35566386

ABSTRACT

The high rates of morbidity and mortality due to fungal infections are associated with a limited antifungal arsenal and the high toxicity of drugs. Therefore, the identification of novel drug targets is challenging due to the several resemblances between fungal and human cells. Here, we report the in vitro antifungal evaluation of two acylphenols series, namely 2-acyl-1,4-benzo- and 2-acyl-1,4-naphthohydroquinones. The antifungal properties were assessed on diverse Candida and filamentous fungi strains through the halo of inhibition (HOI) and minimal inhibitory concentration (MIC). The antifungal activities of 2-acyl-1,4-benzohydroquinone derivatives were higher than those of the 2-acyl-1,4-naphthohydroquinone analogues. The evaluation indicates that 2-octanoylbenzohydroquinone 4 is the most active member of the 2-acylbenzohydroquinone series, with MIC values ranging from 2 to 16 µg/mL. In some fungal strains (i.e., Candida krusei and Rhizopus oryzae), such MIC values of compound 4 (2 and 4 µg/mL) were comparable to that obtained by amphotericin B (1 µg/mL). The compound 4 was evaluated for its antioxidant activity by means of FRAP, ABTS and DPPH assays, showing moderate activity as compared to standard antioxidants. Molecular docking studies of compound 4 and ADMET predictions make this compound a potential candidate for topical pharmacological use. The results obtained using the most active acylbenzohydroquinones are promising because some evaluated Candida strains are known to have decreased sensitivity to standard antifungal treatments.


Subject(s)
Antifungal Agents , Mycoses , Amphotericin B/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Candida , Fungi , Humans , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycoses/microbiology
4.
Oxid Med Cell Longev ; 2020: 8939716, 2020.
Article in English | MEDLINE | ID: mdl-33101594

ABSTRACT

The reaction of 2-acyl-1,4-naphthoquinones with N,N-dimethylaniline and 2,5-dimethoxyaniline, promoted by catalytic amounts of CeCl3·7H2O under "open-flask" conditions, produced a variety of 2-acyl-3-aminophenyl-1,4-naphthoquinones structurally related to the cytotoxic 2-acetyl-3-phenyl-1,4-naphthoquinone, an inhibitor of the heat shock chaperone protein Hsp90. The members of the 2-acyl-3-aminophenyl-1,4-naphthoquinone series were isolated in good yields (63-98%). The cyclic voltammograms of the 2-acyl-3-aminophenyl-1,4-naphthoquinone exhibit two one-electron reduction waves to the corresponding radical-anion and dianion and two quasireversible oxidation peaks. The first and second half-wave potential values (E 1/2) of the members of the series are sensitive to the push-pull electronic effects of the substituents in the naphthoquinone scaffold. Furthermore, the in vitro antiproliferative properties of these new quinones were evaluated on two human cancer cells DU-145 (prostate) and MCF-7 (mammary) and a nontumorigenic HEK-293 (kidney) cell line, using the MTT colorimetric method. Two members, within the series, exhibited interesting cytotoxic activities on human prostate and mammary cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Naphthoquinones/pharmacology , Antineoplastic Agents/chemical synthesis , Antioxidants/analysis , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Electrochemical Techniques , Female , HEK293 Cells , Humans , Male , Naphthoquinones/chemistry , Oxidation-Reduction , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Structure-Activity Relationship
5.
Parkinsons Dis ; 2020: 2497386, 2020.
Article in English | MEDLINE | ID: mdl-32733667

ABSTRACT

INTRODUCTION: Parkinson's disease (PD) is one of the most prevalent age-related neurodegenerative disorders. The progression of PD produces an important disease burden in patients due to functional impairment, which also has repercussions on caregivers. In addition, it has become a challenge for health systems, especially in developing countries, which have limited resources. Multidisciplinary teams with a community approach have proved effective in high-income countries; however, there is no reported literature in low- and middle-income countries about this kind of initiative. OBJECTIVE: This paper aims to document the experience of patients, caregivers, and experts in a community approach as an innovative model in a middle-income country. METHODS: A quantitative descriptive research was conducted. The selection criteria were having a PD diagnosis, attending with a caregiver to Saturdays in Motion (SIM), or being a clinical expert invited to SIM. PD patients and their caregivers answered three surveys on their points of view with respect to SIM: SIM and their quality of life (QoL) and PDQ-39 and Zarit, whereas clinical experts completed two questions related to the SIM program. Descriptive statistics were used to summarize the results of the surveys and clinical tests. RESULTS: Forty-eight, twenty-four, and twenty-one subjects answered surveys one, two, and three, respectively. In total, four clinical experts were interviewed. 87.9% of the patients consider that SIM activities improved their QoL. The most affected areas in PDQ-39 were those related to the social area. Around 66.6% of the caregivers reported a mild burden on Zarit and think that SIM enhances the PD patient's QoL. Clinical experts highlighted the sense of community and empathy. CONCLUSION: Our preliminary experience shows a multidisciplinary model with a community approach which redefines the traditional relationship between patients, caregivers, and clinical experts. This aim of this initiative is that education and empowerment patients and caregivers reach a better perception of QoL.

6.
Molecules ; 25(4)2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32093392

ABSTRACT

A series of benzo[g]benzothiazolo[2,3-b]quinazoline-7,12-quinones were prepared from 2-acylnaphthohydroquinones and 2-aminobenzothiazoles and were evaluated for their in vitro antiproliferative activity. After screening using the MTT reduction assay, their IC50 values were calculated on a panel of cancer cells (T24, DU-145, MCF-7). Current standard anticancer drugs were included as control, and their calculated IC50 values were 7.8 and 23.5 µM for 5-fluorouracil and tamoxifen, respectively. Non-cancer cells (AG1523) were included to assess cancer cell sensitivity and drug selectivity. Four members of the series, with IC50 values from 0.11 to 2.98 µM, were chosen for further assays. The selected quinones were evaluated regarding their effects on cancer cell proliferation (clonogenic assay) and on Hsp90 and poly(ADPribose)polymerase (PARP) protein integrity. The most active compound (i.e., 15) substantially inhibited colony forming unit (CFU) formation at 0.25 µM. In the presence of ascorbate, it induced an oxidative cleavage of Hsp90 but had no effect on PARP protein integrity. In an in vivo animal model, it discreetly increased the mean survival time (m.s.t.) of tumor-bearing mice. In light of these results, compound 15 represents a potential lead-molecule to be further developed.


Subject(s)
Antineoplastic Agents , Cell Proliferation/drug effects , HSP90 Heat-Shock Proteins , Neoplasm Proteins , Neoplasms, Experimental , Quinazolines , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Ascorbic Acid , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Humans , MCF-7 Cells , Mice , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Quinazolines/chemical synthesis , Quinazolines/chemistry , Quinazolines/pharmacology , Xenograft Model Antitumor Assays
7.
Molecules ; 24(23)2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31801190

ABSTRACT

In the search for new quinoid compounds endowed with potential anticancer activity, the synthesis of novel heterodimers containing the cytotoxic 7-phenylaminoisoquinolinequinone and 2-phenylaminonaphthoquinone pharmacophores, connected through methylene and ethylene spacers, is reported. The heterodimers were prepared from their respective isoquinoline and naphthoquinones and 4,4'-diaminodiphenyl alkenes. The access to the target heterodimers and their corresponding monomers was performed both through oxidative amination reactions assisted by ultrasound and CeCl3·7H2O catalysis "in water". This eco-friendly procedure was successfully extended to the one-pot synthesis of homodimers derived from the 7-phenylaminoisoquinolinequinone pharmacophore. The electrochemical properties of the monomers and dimers were determined by cyclic and square wave voltammetry. The number of electrons transferred during the oxidation process, associated to the redox potential EI1/2, was determined by controlled potential coulometry.


Subject(s)
Aniline Compounds/chemistry , Chemical Phenomena , Chemistry Techniques, Synthetic , Green Chemistry Technology , Isoquinolines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Electrochemistry/methods , Humans , Isoquinolines/chemical synthesis , Molecular Structure , Polymers
8.
Front Microbiol ; 10: 1225, 2019.
Article in English | MEDLINE | ID: mdl-31249557

ABSTRACT

The increasing detection of virulent and/or multidrug resistant bacterial strains makes necessary the development of new antimicrobial agents acting through novel mechanisms and cellular targets. A good choice are molecules aimed to interfere with the cell division machinery or divisome, which is indispensable for bacterial survival and propagation. A key component of this machinery, and thus a good target, is FtsZ, a highly conserved GTPase protein that polymerizes in the middle of the cell on the inner face of the cytoplasmic membrane forming the Z ring, which acts as a scaffold for the recruitment of the divisome proteins at the division site. In this work, we tested the inhibitory effect of five diaryl naphtyl ketone (dNAK) molecules on the in vitro polymerization of both Escherichia coli and Bacillus subtilis FtsZ (EcFtsZ and BsFtsZ, respectively). Among these compounds, dNAK 4 showed the strongest inhibition of FtsZ polymerization in vitro, with an IC50 of 2.3 ± 0.06 µM for EcFtsZ and 9.13 ± 0.66 µM for BsFtsZ. We found that dNAK 4 binds to GDP-FtsZ polymers but not to the monomer in GTP or GDP state. This led to the polymerization of short and curved filaments, rings, open rings forming clusters, and in the case of BsFtsZ, a novel cylindrical structure of stacked open rings. In vivo, dNAK 4 had almost no effect on the growth of E. coli in liquid culture, in contrast to the strong inhibitory effect observed over B. subtilis growth. The insensitivity of E. coli to this compound is probably related to the impermeability of dNAK 4 to the outer membrane. The low amount of this compound required to inhibit several of the bacterial strains tested and the lack of a cytotoxic effect at the concentrations used, makes dNAK 4 a very good candidate as a starting molecule for the development of a new antibiotic.

9.
Molecules ; 24(9)2019 May 08.
Article in English | MEDLINE | ID: mdl-31071970

ABSTRACT

A broad range of 3-acyl-2,5-bis(phenylamino)-1,4-benzoquinones were synthesized and their voltammetric values, as well as in vitro cancer cell cytotoxicities, were assessed. The members of this series were prepared from acylbenzoquinones and phenylamines, in moderate to good yields (47-74%), through a procedure involving a sequence of two in situ regioselective oxidative amination reactions. The cyclic voltammograms of the aminoquinones exhibit two one-electron reduction waves to the corresponding radical-anion and dianion, and two quasi-reversible oxidation peaks. The first and second half-wave potential values (E1/2) of the members of the series were sensitive to the push-pull electronic effects of the substituents around the benzoquinone nucleus. The in vitro cytotoxic activities of the 3-acyl-2,5-bis(phenylamino)-1,4-benzoquinones against human cancer cells (bladder and prostate) and non-tumor human embryonic kidney cells were measured using the MTT colorimetric method. The substitution of both aniline groups, by either methoxy (electron donating effect) or fluorine (electron withdrawal effect), decreased the cytotoxicity in the aminoquinones. Among the members of the unsubstituted phenylamino series, two of the 18 compounds showed interesting anti-cancer activities. A preliminary assay, looking for changes in the expression of selected genes, was performed. In this context, the two compounds increased TNF gene expression, suggesting an association with an inflammatory-like response.


Subject(s)
Benzoquinones/pharmacology , Neoplasms/pathology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzoquinones/chemistry , Cell Death/drug effects , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Inhibitory Concentration 50 , Molecular Conformation , Neoplasms/genetics
10.
Oxid Med Cell Longev ; 2018: 1618051, 2018.
Article in English | MEDLINE | ID: mdl-29849864

ABSTRACT

Infection by Helicobacter pylori increases 10 times the risk of developing gastric cancer. Juglone, a natural occurring 1,4-naphthoquinone, prevents H. pylori growth by interfering with some of its critical metabolic pathways. Here, we report the design, synthesis, and in vitro evaluation of a series of juglone derivatives, namely, 2/3-phenylaminojuglones, as potential H. pylori growth inhibitors. Results show that 5 out of 12 phenylaminojuglones (at 1.5 µg/mL) were 1.5-2.2-fold more active than juglone. Interestingly, most of the phenylaminojuglones (10 out of 12) were 1.1-2.8 fold more active than metronidazole, a known H. pylori growth inhibitor. The most active compound, namely, 2-((3,4,5-trimethoxyphenyl)amino)-5-hydroxynaphthalene-1,4-dione 7, showed significant higher halo of growth inhibitions (HGI = 32.25 mm) to that of juglone and metronidazole (HGI = 14.50 and 11.67 mm). Structural activity relationships of the series suggest that the nature and location of the nitrogen substituents in the juglone scaffold, likely due in part to their redox potential, may influence the antibacterial activity of the series.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Biological Products/therapeutic use , Helicobacter Infections/drug therapy , Helicobacter pylori/pathogenicity , Naphthoquinones/therapeutic use , Anti-Bacterial Agents/pharmacology , Biological Products/pharmacology , Humans , Naphthoquinones/pharmacology , Oxidation-Reduction
11.
Molecules ; 23(2)2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29462956

ABSTRACT

The synthesis of five novel homodimers is reported based on the anilinoisoquinolinequinone scaffold. In these twin-drug derivatives, two units of the anilinoquinone pharmacophores are linked through a methylene spacer. The formation of dimers was achieved by reaction of isoquinolinequinones with 4, 4'-diaminodiphenylmethane via a sequence of two oxidative amination reactions. A preliminary in vitro screening of the homodimers reveals moderate to high cytotoxic activities against MDA-MB-21 breast adenocarcinoma and B16-F10 murine metastatic melanoma cell lines. The asymmetrical homodimer 15 stands out due to its cytotoxic potencies at submicromolar concentrations and high selectivity index (mean IC50 = 0.37 µM; SI = 6.97) compared to those of etoposide (mean IC50 = 3.67; SI = 0.32) and taxol (mean IC50 = 0.35; SI = 0.91) employed as reference anticancer drugs.


Subject(s)
Aniline Compounds/chemical synthesis , Antineoplastic Agents/chemical synthesis , Benzoquinones/chemical synthesis , Isoquinolines/chemical synthesis , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzoquinones/pharmacology , Breast Neoplasms/drug therapy , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , Humans , Isoquinolines/pharmacology , Melanoma, Experimental/drug therapy , Mice
12.
Molecules ; 22(12)2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29261169

ABSTRACT

The reaction of 2-acetyl- and 2-benzoyl-1,4-naphthoquinone with (Z)-methyl 3-(hydroxymethyl)aminocrotonate proceeds through a formal [3+3] process to yield the corresponding 1,2-dihydrobenzisoquinolinequinones in 63% and 72% yield, respectively. The reactions of 2-acyl-1,4-naphthoquinone with enaminones, derived from diverse l- and d-amino acid methyl esters, produced the corresponding naphthoquinone amino acids conjugates bonded through a vinyl spacer in the yields range 40-71%. The presence of not-separable isomers of the naphthoquinone amino acids conjugates in the ¹H- and 13C-NMR spectra is explained by the existence of conformational isomers generated by hindered rotation of the substituent bonded to the quinone double bond. These new naphthoquinone amino acids conjugates were screened in vitro on normal and cancer cell lines and showed moderate cytotoxic activities.


Subject(s)
Amino Acids/chemistry , Antineoplastic Agents/chemistry , Naphthoquinones/chemistry , Vinyl Compounds/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Survival/drug effects , Humans , Molecular Structure , Structure-Activity Relationship
13.
Oxid Med Cell Longev ; 2016: 3939540, 2016.
Article in English | MEDLINE | ID: mdl-27672420

ABSTRACT

The vascular endothelium plays an essential role in the control of the blood flow. Pharmacological agents like quinone (menadione) at various doses modulate this process in a variety of ways. In this study, Q7, a 2-phenylamino-1,4-naphthoquinone derivative, significantly increased oxidative stress and induced vascular dysfunction at concentrations that were not cytotoxic to endothelial or vascular smooth muscle cells. Q7 reduced nitric oxide (NO) levels and endothelial vasodilation to acetylcholine in rat aorta. It also blunted the calcium release from intracellular stores by increasing the phenylephrine-induced vasoconstriction when CaCl2 was added to a calcium-free medium but did not affect the influx of calcium from extracellular space. Q7 increased the vasoconstriction to BaCl2 (10-3 M), an inward rectifying K+ channels blocker, and blocked the vasodilation to KCl (10-2 M) in aortic rings precontracted with BaCl2. This was recovered with sodium nitroprusside (10-8 M), a NO donor. In conclusion, Q7 induced vasoconstriction was through a modulation of cellular mechanisms involving calcium fluxes through K+ channels, and oxidative stress induced endothelium damage. These findings contribute to the characterization of new quinone derivatives with low cytotoxicity able to pharmacologically modulate vasodilation.

14.
Molecules ; 21(9)2016 Sep 08.
Article in English | MEDLINE | ID: mdl-27617997

ABSTRACT

A variety of aminoisoquinoline-5,8-quinones bearing α-amino acids moieties were synthesized from 3-methyl-4-methoxycarbonylisoquinoline-5,8-quinone and diverse l- and d-α-amino acid methyl esters. The members of the series were evaluated for their cytotoxic activity against normal and cancer cell lines by using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. From the current investigation, structure-activity relationships demonstrate that the location and structure of the amino acid fragment plays a significant role in the cytotoxic effects. Moderate to high cytotoxic activity was observed and four members, derived from l-alanine, l-leucine, l-phenylalanine, and d-phenylalanine, were selected as promising compounds by their IC50 ranging from 0.5 to 6.25 µM and also by their good selectivity indexes (≥2.24).


Subject(s)
Amino Acids , Antineoplastic Agents , Cytotoxins , Neoplasms/drug therapy , Quinolones , Amino Acids/chemical synthesis , Amino Acids/chemistry , Amino Acids/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cytotoxins/chemical synthesis , Cytotoxins/chemistry , Cytotoxins/pharmacology , Drug Screening Assays, Antitumor , Humans , Neoplasms/metabolism , Neoplasms/pathology , Quinolones/chemical synthesis , Quinolones/chemistry , Quinolones/pharmacology
15.
Biochem Biophys Res Commun ; 477(4): 640-646, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27346131

ABSTRACT

The purpose of the study was to obtain further in vivo data of antitumor effects and mechanisms triggered by juglone and Q7 in combination with ascorbate. The study was done using Ehrlich ascites tumor-bearing mice. Treatments were intraperitoneal every 24 h for 9 days. Control group was treated with excipient. Previous tests selected the doses of juglone and Q7 plus ascorbate (1 and 100 mg/kg, respectively). Samples of ascitic fluid were collected to evaluate carbonyl proteins, GSH and activity of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase. Hypoxia inducible factor HIF-1α, GLUT1, proteins driving cell cycle (p53, p16 and cyclin A) and apoptosis (poly-ADP-polymerase PARP, Bax and Bcl-xL) were assessed by western blot. Tumor cells were categorized by the phase of cell cycle using flow cytometry and type of cell death using acridine orange/ethidium bromide. A glucose uptake assessment was performed by liquid scintillation using Ehrlich tumor cells cultured with (14)C-deoxyglucose. Treatments caused increased protein carbonylation and activity of antioxidant enzymes and decreased levels of GSH, HIF-1α, GLUT1 and glucose uptake in tumor cells. They also caused increased number of tumor cells in G1, p53 and p16 activation and decreased cyclin A, but only when combined with ascorbate. Apoptosis was induced mostly when treatments were done with ascorbate, causing PARP and Bax cleavage, and increased Bax/Bcl-xL ratio. Juglone and Q7 in combination with ascorbate caused inhibition of tumor progress in vivo by triggering apoptosis and cell cycle arrest associated with oxidative stress, suppression of HIF-1 and uncoupling of glycolytic metabolism.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Ehrlich Tumor/drug therapy , Aminophenols/administration & dosage , Animals , Ascorbic Acid/administration & dosage , Carcinoma, Ehrlich Tumor/pathology , Disease Progression , Male , Mice , Mice, Inbred BALB C , Naphthoquinones/administration & dosage
16.
Biochem Biophys Res Commun ; 466(3): 418-25, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26365353

ABSTRACT

Dihydroxynaphthyl aryl ketones 1-5 have been evaluated for their abilities to inhibit microtubule assembly and the binding to tubulin. Compounds 3, 4 and 5 displayed competitive inhibition against colchicine binding, and docking analysis showed that they bind to the tubulin colchicine-binding pocket inducing sheets instead of microtubules. Remarkable differences in biological activity observed among the assayed compounds seem to be related to the structure and position of the aryl substituent bonded to the carbonyl group. Compounds 2, 3 and 4, which contain a heterocyclic ring, presented higher affinity for tubulin compared to the carbocyclic analogue 5. Compound 4 showed the best affinity of the series, with an IC50 value of 2.1 µM for microtubule polymerization inhibition and a tubulin dissociation constant of 1.0 ± 0.2 µM, as determined by thermophoresis. Compound 4 was more efficacious in disrupting microtubule assembly in vitro than compound 5 although it contains the trimethoxyphenyl ring present in colchicine. Hydrogen bonds with Asn101 of α-tubulin seem to be responsible for the higher affinity of compound 4 respects to the others.


Subject(s)
Colchicine/metabolism , Ketones/metabolism , Microtubules/metabolism , Tubulin/metabolism , Animals , Binding Sites , Binding, Competitive , Chickens , Colchicine/pharmacology , Hydrogen Bonding , Ketones/chemistry , Ketones/pharmacology , Kinetics , Microtubules/drug effects , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Structure-Activity Relationship , Tubulin Modulators/metabolism , Tubulin Modulators/pharmacology
17.
Beilstein J Org Chem ; 10: 2448-52, 2014.
Article in English | MEDLINE | ID: mdl-25383115

ABSTRACT

A number of N-phenyl-1,4-naphthoquinone monoimines 6-10 were prepared by on-water oxidative phenylamination of 1,5-dihydroxynaphthalene (1) and 5-acetylamino-1-hydroxynaphthalene (5) with oxygen-substituted phenylamines under aerobic conditions and either solar or green LED radiation, in the presence of rose bengal as singlet oxygen sensitizer. As compared to the conventional oxidative phenylamination procedures, this novel synthetic method offers the advantage of aerobic conditions "on water" instead of hazardous oxidant reagents currently employed in aqueous alcoholic media.

18.
Bol. latinoam. Caribe plantas med. aromát ; 13(6): 566-574, nov.2014. ilus, tab
Article in English | LILACS | ID: lil-795827

ABSTRACT

The synthesis of new isomeric ellipticine quinones 3a-c and their in vitro antiproliferative activities on cancer cell lines is reported. The designed N-heterocyclic quinones 3a-c were synthesized through a three step sequence which involves: a) one-pot preparation of 4-methoxycarbonyl-3,4-dimethylisoquinoline-5,8-quinone 1 from 2,5-dihydroxyacetophenone, methyl aminocrotonate and silver (II) oxide; b) regioselective amination of 1 with arylamines to give aminoquinones 2a-c and c) palladium-catalyzed intramolecular oxidative coupling of 7-aminoisoquinoline-5,8-quinones 2a-c. The in vitro antiproliferative activity of the new angular quinones was evaluated againts one normal cell line (lung fibroblasts) and gastric, lung and bladder cancer cell lines in 72-h drug exposure assays. The new compounds displayed similar or higher antiproliferative activity with respect to their quinone precursors 2a-c. The isomeric ellipticine quinone 2b appears as the more active member on bladder cancer cell line (IC50: 2.4 uM), comparable to etoposide used as anticancer reference drug...


Se describe la síntesis de las nuevas quinonas 3a-c, isoméricas de elipticina, y sus actividades antiproliferativas in vitro en líneas de células de cáncer. Las quinonas N-heterocíclicas 3a-c se sintetizaron a través de una secuencia que involucra: a) preparación de 4- metoxicarbonil-3,4-dimetlisoquinolin-5,8-quinone 1 a partir de 2,5-dihidroxiacetofenona, aminocrotonato de metilo y óxido de plata (I); b) aminación regioselectiva de 1 con arilaminas para producir las aminoquinonas 2a-c y c) acoplamiento oxidante intramolecular de 7- aminoisoquinolin-5,8-quinonas 2a-c catalizado con paladio. La actividad antiproliferative in vitro de los nuevos compuestos fue evaluada en una línea celular normal (fibroblastos de pulmón) y líneas de células de cáncer gástrico, pulmón y vejiga en ensayos de exposición de 72 horas a la droga. Las quinonas 3a-c exhiben interesantes propiedades antiproliferativas destacando la elipticinquinona isomérica 2b en células de cáncer de vejiga (IC50: 2.4 uM) comparado con etopósido usada como droga anticancer de referencia. Los nuevos compuestos mostraron actividades antiproliferativa similar o mayor respecto de las correspondientes quinonas precursoras 2a-c. La elipticin quinona isomérica 2b corresponde al miembro más activo en células de câncer de vejiga (IC50: 2.4 uM), comparable a la del etopósido, usada como droga anticáncer de referencia...


Subject(s)
Humans , Ellipticines/pharmacology , Ellipticines/chemical synthesis , Cell Proliferation , Quinones/pharmacology , Quinones/chemical synthesis , Cell Line, Tumor , Oxidative Coupling
19.
Mol Med Rep ; 10(1): 405-10, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24756411

ABSTRACT

Naphthoquinones interact with biological systems by generating reactive oxygen species (ROS) that can damage cancer cells. The cytotoxicity and the antitumor activity of 3­acyl­2­phenylamino­1,4­naphthoquinones (DPB1­DPB9) were evaluated in the MCF7 human breast cancer cell line and in male Ehrlich tumor­bearing Balb/c mice. DPB4 was the most cytotoxic derivative against MCF7 cells (EC50 15 µM) and DPB6 was the least cytotoxic one (EC50 56 µM). The 1,4­naphthoquinone derivatives were able to cause DNA damage and promote DNA fragmentation as shown by the plasmid DNA cleavage assay (FII form). In addition, 1,4­naphthoquinone derivatives possibly interacted with DNA as intercalating agents, which was demonstrated by the changes caused in the fluorescence of the DNA­ethidium bromide complexes. Cell death of MCF7 cells induced by 3­acyl­2­phenylamino­1,4­naphthoquinones was mostly due to apoptosis. The DNA fragmentation and subsequent apoptosis may be correlated to the redox potential of the 1,4­naphthoquinone derivatives that, once present in the cell nucleus, led to the increased generation of ROS. Finally, certain 1,4­naphthoquinone derivatives and particularly DPB4 significantly inhibited the growth of Ehrlich ascites tumors in mice (73%).


Subject(s)
Antineoplastic Agents/toxicity , Apoptosis/drug effects , DNA/metabolism , Intercalating Agents/toxicity , Naphthoquinones/toxicity , Reactive Oxygen Species/metabolism , Animals , Antineoplastic Agents/chemistry , Carcinoma, Ehrlich Tumor/drug therapy , DNA/chemistry , DNA Damage/drug effects , Humans , Intercalating Agents/chemistry , Intercalating Agents/therapeutic use , MCF-7 Cells , Male , Mice , Mice, Inbred BALB C , Naphthoquinones/chemistry , Naphthoquinones/therapeutic use , Transplantation, Heterologous
20.
Molecules ; 19(1): 726-39, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24406784

ABSTRACT

The synthesis of a variety of 1-aryl-7-phenylaminoisoquinolinequinones from 1,4-benzoquinone and arylaldehydes via the respective 1-arylisoquinolinequinones is reported. The cyclic voltammograms of the new compounds exhibit two one-electron reduction waves to the corresponding radical-anion and dianion and two quasi-reversible oxidation peaks. The half-wave potential values (EI½) of the members of the series have proven sensitive to the electron-donor effect of the aryl group (phenyl, 2-thienyl, 2-furyl) at the 1-position as well as to the phenylamino groups (anilino, p-anisidino) at the 7-position. The antiproliferative activity of the new compounds was evaluated in vitro using the MTT colorimetric method against one normal cell line (MRC-5 lung fibroblasts) and two human cancer cell lines: AGS human gastric adenocarcinoma and HL-60 human promyelocytic leukemia cells in 72-h drug exposure assays. Among the series, compounds 5a, 5b, 5g, 5h, 6a and 6d exhibited interesting antiproliferative activities against human gastric adenocarcinoma. The 1-arylisoquinolinequinone 6a was found to be the most promising active compound against the tested cancer cell lines in terms of IC50 values (1.19; 1.24 µM) and selectivity index (IS: 3.08; 2.96), respect to the anti-cancer agent etoposide used as reference (IS: 0.57; 0.14).


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Isoquinolines/chemistry , Quinones/chemical synthesis , Quinones/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Inhibitory Concentration 50 , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL