Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Acta Diabetol ; 59(9): 1157-1167, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35729357

ABSTRACT

AIMS: Abnormalities in the oculomotor system may represent an early sign of diabetic neuropathy and are currently poorly studied. We designed an eye-tracking-based test to evaluate oculomotor function in patients with type 1 diabetes. METHODS: We used the SRLab-Tobii TX300 Eye tracker®, an eye-tracking device, coupled with software that we developed to test abnormalities in the oculomotor system. The software consists of a series of eye-tracking tasks divided into 4 classes of parameters (Resistance, Wideness, Pursuit and Velocity) to evaluate both smooth and saccadic movement in different directions. We analyzed the oculomotor system in 34 healthy volunteers and in 34 patients with long-standing type 1 diabetes. RESULTS: Among the 474 parameters analyzed with the eye-tracking-based system, 11% were significantly altered in patients with type 1 diabetes (p < 0.05), with a higher proportion of abnormalities observed in the Wideness (24%) and Resistance (10%) parameters. Patients with type 1 diabetes without diabetic neuropathy showed more frequently anomalous measurements in the Resistance class (p = 0.02). The classes of Velocity and Pursuit were less frequently altered in patients with type 1 diabetes as compared to healthy subjects, with anomalous measurements mainly observed in patients with diabetic neuropathy. CONCLUSIONS: Abnormalities in oculomotor system function can be detected in patients with type 1 diabetes using a novel eye-tracking-based test. A larger cohort study may further determine thresholds of normality and validate whether eye-tracking can be used to non-invasively characterize early signs of diabetic neuropathy. TRIAL: NCT04608890.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Neuropathies , Cohort Studies , Diabetes Mellitus, Type 1/complications , Diabetic Neuropathies/diagnosis , Diabetic Neuropathies/etiology , Humans , Pursuit, Smooth , Saccades
2.
Acta Diabetol ; 57(7): 883-890, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32124076

ABSTRACT

AIMS/HYPOTHESIS: Impaired wound healing significantly impacts morbidity and mortality in diabetic patients, necessitating the development of novel treatments to improve the wound healing process. We here investigated the topical use of acellular embryonic stem cell extracts (EXTs) in wound healing in diabetic db/db mice. METHODS: Wounds were induced in diabetic db/db mice, which were subsequently treated with EXTs, with 3T3 fibroblast cell line protein extracts (3T3XTs) or with saline as a control. Pathology and mechanistic assays were then performed. RESULTS: The in vivo topical administration of EXTs facilitates wound closure, contraction and re-epithelialization. Moreover, EXTs reduced the number of wound-infiltrating CD45+ inflammatory cells and increased the rate of repair and of angiogenesis as compared to controls. Interestingly, the EXT effect was partly enhanced by the use of a collagen-based biocompatible scaffold. In vivo, topical administration of EXTs increased the percentage of regulatory T cells in the wounded tissue, while in vitro EXT treatment reduced T cell-mediated IFN-γ production. Proteomic screening revealed 82 proteins differentially segregating in EXTs as compared to 3T3 extracts, with APEX1 identified as a key player for the observed immunomodulatory effect of EXTs. CONCLUSIONS: EXTs are endowed with immunoregulatory and anti-inflammatory properties; their use improves wound healing in diabetic preclinical models.


Subject(s)
Cell Extracts/pharmacology , Cell Extracts/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/physiopathology , Embryonic Stem Cells/chemistry , Wound Healing/drug effects , 3T3 Cells , Animals , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/pathology , Embryonic Stem Cells/metabolism , Immunity, Innate/drug effects , Male , Mice , Mice, Transgenic , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/physiopathology , Proteome/analysis , Proteome/metabolism , Proteomics , Wound Healing/physiology
3.
PLoS One ; 12(1): e0169077, 2017.
Article in English | MEDLINE | ID: mdl-28052095

ABSTRACT

BACKGROUND: Alteration of certain metabolites may play a role in the pathophysiology of renal allograft disease. METHODS: To explore metabolomic abnormalities in individuals with a failing kidney allograft, we analyzed by liquid chromatography-mass spectrometry (LC-MS/MS; for ex vivo profiling of serum and urine) and two dimensional correlated spectroscopy (2D COSY; for in vivo study of the kidney graft) 40 subjects with varying degrees of chronic allograft dysfunction stratified by tertiles of glomerular filtration rate (GFR; T1, T2, T3). Ten healthy non-allograft individuals were chosen as controls. RESULTS: LC-MS/MS analysis revealed a dose-response association between GFR and serum concentration of tryptophan, glutamine, dimethylarginine isomers (asymmetric [A]DMA and symmetric [S]DMA) and short-chain acylcarnitines (C4 and C12), (test for trend: T1-T3 = p<0.05; p = 0.01; p<0.001; p = 0.01; p = 0.01; p<0.05, respectively). The same association was found between GFR and urinary levels of histidine, DOPA, dopamine, carnosine, SDMA and ADMA (test for trend: T1-T3 = p<0.05; p<0.01; p = 0.001; p<0.05; p = 0.001; p<0.001; p<0.01, respectively). In vivo 2D COSY of the kidney allograft revealed significant reduction in the parenchymal content of choline, creatine, taurine and threonine (all: p<0.05) in individuals with lower GFR levels. CONCLUSIONS: We report an association between renal function and altered metabolomic profile in renal transplant individuals with different degrees of kidney graft function.


Subject(s)
Kidney Transplantation , Metabolomics/methods , Adult , Chromatography, Liquid , Creatinine/urine , Female , Glomerular Filtration Rate/physiology , Humans , Male , Middle Aged , Multivariate Analysis , Tandem Mass Spectrometry
4.
Regen Med ; 11(4): 395-405, 2016 06.
Article in English | MEDLINE | ID: mdl-27165670

ABSTRACT

Hematopoietic stem cells (HSCs) have been shown recently to hold much promise in curing autoimmune diseases. Newly diagnosed Type 1 diabetes individuals have been successfully reverted to normoglycemia by administration of autologous HSCs in association with a nonmyeloablative regimen (antithymocyte globulin + cyclophasmide). Furthermore, recent trials reported positive results by using HSCs in treatment of systemic sclerosis, multiple sclerosis and rheumatoid arthritis as well. Early data suggested that HSCs possess immunological properties that may be harnessed to alleviate the symptoms of individuals with autoimmune disorders and possibly induce remission of autoimmune diseases. Mechanistically, HSCs may facilitate the generation of regulatory T cells, may inhibit the function of autoreactive T-cell function and may reshape the immune system.


Subject(s)
Autoimmune Diseases/therapy , Hematopoietic Stem Cell Transplantation/statistics & numerical data , Animals , Humans
5.
Acta Diabetol ; 52(5): 917-27, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25808641

ABSTRACT

AIMS: Mesenchymal stem cells (MSCs) are multipotent cells with immunomodulatory properties. We tested the ability of MSCs to delay islet allograft rejection. METHODS: Mesenchymal stem cells were generated in vitro from C57BL/6 and BALB/c mice bone marrow, and their immunomodulatory properties were tested in vitro. We then tested the effect of a local or systemic administration of heterologous and autologous MSCs on graft survival in a fully allogeneic model of islet transplantation (BALB/c islets into C57BL/6 mice). RESULTS: In vitro, autologous, but not heterologous, MSCs abrogated immune cell proliferation in response to alloantigens and skewed the immune response toward a Th2 profile. A single dose of autologous MSCs co-transplanted under the kidney capsule with allogeneic islets delayed islet rejection, reduced graft infiltration, and induced long-term graft function in 30 % of recipients. Based on ex vivo analysis of recipient splenocytes, the use of autologous MSCs did not appear to have any systemic effect on the immune response toward graft alloantigens. The systemic injection of autologous MSCs or the local injection of heterologous MSCs failed to delay islet graft rejection. CONCLUSION: Autologous, but not heterologous, MSCs showed multiple immunoregulatory properties in vitro and delayed allograft rejection in vivo when co-transplanted with islets; however, they failed to prevent rejection when injected systemically. Autologous MSCs thus appear to produce a local immunoprivileged site, which promotes graft survival.


Subject(s)
Graft Rejection/prevention & control , Islets of Langerhans Transplantation/methods , Mesenchymal Stem Cell Transplantation/methods , Animals , Bone Marrow Cells/immunology , Bone Marrow Transplantation/methods , Cell Proliferation , Cytokines/metabolism , Graft Rejection/immunology , Graft Survival , Lymphocyte Culture Test, Mixed , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/ultrastructure , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Spleen/cytology , Th17 Cells/immunology
6.
Pharmacol Res ; 98: 69-75, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25014184

ABSTRACT

Islet transplantation has been demonstrated to improve glycometabolic control, to reduce hypoglycemic episodes and to halt the progression of diabetic complications. However, the exhaustion of islet function and the side effects related to chronic immunosuppression limit the spread of this technique. Consequently, new immunoregulatory protocols have been developed, with the aim to avoid the use of a life-time immunosuppression. Several approaches have been tested in preclinical models, and some are now under clinical evaluation. The development of new small molecules and new monoclonal or polyclonal antibodies is continuous and raises the possibility of targeting new costimulatory pathways or depleting particular cell types. The use of stem cells and regulatory T cells is underway to take advantage of their immunological properties and to induce tolerance. Xenograft islet transplantation, although having severe problems in terms of immunological compatibility, could theoretically provide an unlimited source of donors; using pigs carrying human immune antigens has showed indeed promising results. A completely different approach, the use of encapsulated islets, has been developed; synthetic structures are used to hide islet alloantigen from the immune system, thus preserving islet endocrine function. Once one of these strategies is demonstrated safe and effective, it will be possible to establish clinical islet transplantation as a treatment for patients with type 1 diabetes long before the onset of diabetic-related complications.


Subject(s)
Immunosuppression Therapy/methods , Immunosuppressive Agents/therapeutic use , Islets of Langerhans Transplantation/immunology , Islets of Langerhans Transplantation/methods , Animals , Diabetes Mellitus, Type 1/therapy , Heterografts , Humans , Swine , Transplantation, Autologous
7.
Diabetes ; 63(9): 3041-6, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24947362

ABSTRACT

Type 1 diabetes (T1D) is one of the major autoimmune diseases affecting children and young adults worldwide. To date, the different immunotherapies tested have achieved insulin independence in <5% of treated individuals. Recently, a novel hematopoietic stem cell (HSC)-based strategy has been tested in individuals with new-onset T1D. The aim of this study was to determine the effects of autologous nonmyeloablative HSC transplantation in 65 individuals with new-onset T1D who were enrolled in two Chinese centers and one Polish center, pooled, and followed up for 48 months. A total of 59% of individuals with T1D achieved insulin independence within the first 6 months after receiving conditioning immunosuppression therapy (with antithymocyte globulin and cyclophosphamide) and a single infusion of autologous HSCs, and 32% remained insulin independent at the last time point of their follow-up. All treated subjects showed a decrease in HbA1c levels and an increase in C-peptide levels compared with pretreatment. Despite a complete immune system recovery (i.e., leukocyte count) after treatment, 52% of treated individuals experienced adverse effects. Our study suggests the following: 1) that remission of T1D is possible by combining HSC transplantation and immunosuppression; 2) that autologous nonmyeloablative HSC transplantation represents an effective treatment for selected individuals with T1D; and 3) that safer HSC-based therapeutic options are required.


Subject(s)
Diabetes Mellitus, Type 1/therapy , Hematopoietic Stem Cell Transplantation , Adolescent , Adult , C-Peptide/metabolism , Child , Cyclophosphamide/therapeutic use , Female , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunosuppression Therapy , Insulin/therapeutic use , Male , Remission Induction , Transplantation, Autologous
SELECTION OF CITATIONS
SEARCH DETAIL
...