Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Cell Rep ; 43(3): 113965, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38492217

ABSTRACT

G3BP1/2 are paralogous proteins that promote stress granule formation in response to cellular stresses, including viral infection. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibits stress granule assembly and interacts with G3BP1/2 via an ITFG motif, including residue F17, in the N protein. Prior studies examining the impact of the G3PB1-N interaction on SARS-CoV-2 replication have produced inconsistent findings, and the role of this interaction in pathogenesis is unknown. Here, we use structural and biochemical analyses to define the residues required for G3BP1-N interaction and structure-guided mutagenesis to selectively disrupt this interaction. We find that N-F17A mutation causes highly specific loss of interaction with G3BP1/2. SARS-CoV-2 N-F17A fails to inhibit stress granule assembly in cells, has decreased viral replication, and causes decreased pathology in vivo. Further mechanistic studies indicate that the N-F17-mediated G3BP1-N interaction promotes infection by limiting sequestration of viral genomic RNA (gRNA) into stress granules.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , DNA Helicases/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Virulence , RNA, Guide, CRISPR-Cas Systems , Nucleocapsid Proteins , Virus Replication , RNA, Viral/genetics
2.
EMBO Rep ; 25(2): 902-926, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177924

ABSTRACT

Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1, FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and reduced levels of viral antigen in lungs during the early stages of infection. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins and provides molecular insight into the possible underlying molecular defects in fragile X syndrome.


Subject(s)
COVID-19 , Fragile X Syndrome , Humans , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Peptides/metabolism , RNA-Binding Proteins/genetics , SARS-CoV-2
3.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693415

ABSTRACT

Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1 and FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and have delayed disease onset in vivo. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins for efficient infection and provides molecular insight to the possible underlying molecular defects in fragile X syndrome.

4.
J Med Virol ; 95(8): e29015, 2023 08.
Article in English | MEDLINE | ID: mdl-37539979

ABSTRACT

It has been proposed that infection by adipogenic viruses constitutes a "low risk" factor for obesity. Here, we report the presence of adenovirus 36 (Ad36) and its viral load copy number in fat tissue of participants with obesity and normal weight; phylogenetic analysis was performed to describe their relationship and genetic variability among viral haplotypes. Adipose tissue obtained from 105 adult patients with obesity (cases) and 26 normal-weight adult participants as controls were analyzed by quantitative polymerase chain reaction (qPCR) amplifying the partial Ad36 E1a gene. The amplicons were examined by melting curves and submitted to sequencing. Then, genetic diversity and phylogenetic inferences were performed. Ad36 was identified at rates of 82% and 46% in the case and control groups, respectively (p = 1.1 × 10-4 , odds ratio = 5.28); viral load copies were also significantly different between both groups, being 25% higher in the case group. Melting curve analysis showed clear amplification among positive samples. Phylogenetic inferences and genetic diversity analyses showed that the Ad36 E1a gene exhibits low genetic variability and differentiation with strong gene flow due to an expanding process. Our results suggest that the phenomenon of infectobesity by Ad36 might not be a low-risk factor, as has been previously argued by other authors.


Subject(s)
Adenoviridae Infections , Adenoviruses, Human , Adult , Humans , Adenoviruses, Human/genetics , Intra-Abdominal Fat , Phylogeny , Viral Load , Adenoviridae/genetics , Obesity/genetics
5.
bioRxiv ; 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37425880

ABSTRACT

G3BP1/2 are paralogous proteins that promote stress granule formation in response to cellular stresses, including viral infection. G3BP1/2 are prominent interactors of the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the functional consequences of the G3BP1-N interaction in the context of viral infection remain unclear. Here we used structural and biochemical analyses to define the residues required for G3BP1-N interaction, followed by structure-guided mutagenesis of G3BP1 and N to selectively and reciprocally disrupt their interaction. We found that mutation of F17 within the N protein led to selective loss of interaction with G3BP1 and consequent failure of the N protein to disrupt stress granule assembly. Introduction of SARS-CoV-2 bearing an F17A mutation resulted in a significant decrease in viral replication and pathogenesis in vivo, indicating that the G3BP1-N interaction promotes infection by suppressing the ability of G3BP1 to form stress granules.

6.
bioRxiv ; 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37131784

ABSTRACT

SARS-CoV-2 Omicron variants emerged in 2022 with >30 novel amino acid mutations in the spike protein alone. While most studies focus on receptor binding domain changes, mutations in the C-terminus of S1 (CTS1), adjacent to the furin cleavage site, have largely been ignored. In this study, we examined three Omicron mutations in CTS1: H655Y, N679K, and P681H. Generating a SARS-CoV-2 triple mutant (YKH), we found that the mutant increased spike processing, consistent with prior reports for H655Y and P681H individually. Next, we generated a single N679K mutant, finding reduced viral replication in vitro and less disease in vivo. Mechanistically, the N679K mutant had reduced spike protein in purified virions compared to wild-type; spike protein decreases were further exacerbated in infected cell lysates. Importantly, exogenous spike expression also revealed that N679K reduced overall spike protein yield independent of infection. Although a loss-of-function mutation, transmission competition demonstrated that N679K had a replication advantage in the upper airway over wild-type SARS-CoV-2 in hamsters, potentially impacting transmissibility. Together, the data show that N679K reduces overall spike protein levels during Omicron infection, which has important implications for infection, immunity, and transmission.

7.
J Virol ; 97(2): e0153222, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36722972

ABSTRACT

Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'-O-methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process. Based on observations with other CoVs, we hypothesized that NSP16 2'-O-MTase function protects SARS-CoV-2 from cap-sensing host restriction. Therefore, we engineered SARS-CoV-2 with a mutation that disrupts a conserved residue in the active site of NSP16. We subsequently show that this mutant is attenuated both in vitro and in vivo, using a hamster model of SARS-CoV-2 infection. Mechanistically, we confirm that the NSP16 mutant is more sensitive than wild-type SARS-CoV-2 to type I interferon (IFN-I) in vitro. Furthermore, silencing IFIT1 or IFIT3, IFN-stimulated genes that sense a lack of 2'-O-methylation, partially restores fitness to the NSP16 mutant. Finally, we demonstrate that sinefungin, an MTase inhibitor that binds the catalytic site of NSP16, sensitizes wild-type SARS-CoV-2 to IFN-I treatment and attenuates viral replication. Overall, our findings highlight the importance of SARS-CoV-2 NSP16 in evading host innate immunity and suggest a target for future antiviral therapies. IMPORTANCE Similar to other coronaviruses, disruption of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) NSP16 function attenuates viral replication in a type I interferon-dependent manner. In vivo, our results show reduced disease and viral replication at late times in the hamster lung, but an earlier titer deficit for the NSP16 mutant (dNSP16) in the upper airway. In addition, our results confirm a role for IFIT1 but also demonstrate the necessity of IFIT3 in mediating dNSP16 attenuation. Finally, we show that targeting NSP16 activity with a 2'-O-methyltransferase inhibitor in combination with type I interferon offers a novel avenue for antiviral development.


Subject(s)
Adaptor Proteins, Signal Transducing , Intracellular Signaling Peptides and Proteins , SARS-CoV-2 , Viral Nonstructural Proteins , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , COVID-19/virology , Interferon Type I/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Methyltransferases/metabolism , RNA-Binding Proteins/genetics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Viral Nonstructural Proteins/metabolism , Animals , Cricetinae
8.
Article in English | MEDLINE | ID: mdl-36383890

ABSTRACT

Human Adenovirus 36 (HAdV-36) has been related to diverse effects on metabolism and may attenuate the lipid accumulation in kidneys with increased adiposity. Some of these effects would be related to viral persistence. However, until now, a model of persistent in vitro infection by HAdV-36 is unknown. In this study, we examined the cells of the Vero lineage to explore their permissiveness to long-term HAdV-36 infection. HAdV-36 was productively replicated in Vero cells and maintained long-term infection for up to 35 cell passages. A subculture was obtained from the cells that survived the primary infection at a low MOI (0.5). The production of the extracellular infectious virus with titers ranging from 104 to 106 TCID50/mL and DNA-bearing cells was detected. In long-term infected cells, the intracellular distribution of viral antigen was demonstrated by performing immunolocalization (IFI) and expression of cell-viral antigen in 50% of cells by flow cytometry, using anti-HAdV-36 hyperimmune rabbit serum. Furthermore, E1a and E4orf1 genes in long-term infected passages showed a decreasing trend. Our preliminary results reveal that renal epithelial monkey cells are permissive for the productive infection of HAdV-36. Vero cell culture long-term infection might be a promising model for addressing the fundamental aspects of the HAdV-36 biology that cannot reveal broadly-used cultures, which do not maintain long-term infection in primary or transformed cells.


Subject(s)
Adenoviruses, Human , Animals , Chlorocebus aethiops , Humans , Rabbits , Adenoviruses, Human/genetics , Haplorhini , Vero Cells , Virus Replication , Kidney , Antigens, Viral
9.
bioRxiv ; 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36203546

ABSTRACT

Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'- O methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process. Based on observations with other CoVs, we hypothesized that NSP16 2'- O MTase function protects SARS-CoV-2 from cap-sensing host restriction. Therefore, we engineered SARS-CoV-2 with a mutation that disrupts a conserved residue in the active site of NSP16. We subsequently show that this mutant is attenuated both in vitro and in vivo , using a hamster model of SARS-CoV-2 infection. Mechanistically, we confirm that the NSP16 mutant is more sensitive to type I interferon (IFN-I) in vitro . Furthermore, silencing IFIT1 or IFIT3, IFN-stimulated genes that sense a lack of 2'- O methylation, partially restores fitness to the NSP16 mutant. Finally, we demonstrate that sinefungin, a methyltransferase inhibitor that binds the catalytic site of NSP16, sensitizes wild-type SARS-CoV-2 to IFN-I treatment. Overall, our findings highlight the importance of SARS-CoV-2 NSP16 in evading host innate immunity and suggest a possible target for future antiviral therapies. Importance: Similar to other coronaviruses, disruption of SARS-CoV-2 NSP16 function attenuates viral replication in a type I interferon-dependent manner. In vivo , our results show reduced disease and viral replication at late times in the hamster lung, but an earlier titer deficit for the NSP16 mutant (dNSP16) in the upper airway. In addition, our results confirm a role for IFIT1, but also demonstrate the necessity of IFIT3 in mediating dNSP16 attenuation. Finally, we show that targeting NSP16 activity with a 2'- O methyltransferase inhibitor in combination with type I interferon offers a novel avenue for antiviral development.

10.
Proc Natl Acad Sci U S A ; 119(32): e2205690119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35881779

ABSTRACT

The furin cleavage site (FCS), an unusual feature in the SARS-CoV-2 spike protein, has been spotlighted as a factor key to facilitating infection and pathogenesis by increasing spike processing. Similarly, the QTQTN motif directly upstream of the FCS is also an unusual feature for group 2B coronaviruses (CoVs). The QTQTN deletion has consistently been observed in in vitro cultured virus stocks and some clinical isolates. To determine whether the QTQTN motif is critical to SARS-CoV-2 replication and pathogenesis, we generated a mutant deleting the QTQTN motif (ΔQTQTN). Here, we report that the QTQTN deletion attenuates viral replication in respiratory cells in vitro and attenuates disease in vivo. The deletion results in a shortened, more rigid peptide loop that contains the FCS and is less accessible to host proteases, such as TMPRSS2. Thus, the deletion reduced the efficiency of spike processing and attenuates SARS-CoV-2 infection. Importantly, the QTQTN motif also contains residues that are glycosylated, and disruption of its glycosylation also attenuates virus replication in a TMPRSS2-dependent manner. Together, our results reveal that three aspects of the S1/S2 cleavage site-the FCS, loop length, and glycosylation-are required for efficient SARS-CoV-2 replication and pathogenesis.


Subject(s)
COVID-19 , Furin , Proteolysis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Amino Acid Motifs/genetics , Animals , COVID-19/virology , Chlorocebus aethiops , Furin/chemistry , Humans , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sequence Deletion , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Virus Replication/genetics
11.
PLoS Pathog ; 18(6): e1010627, 2022 06.
Article in English | MEDLINE | ID: mdl-35728038

ABSTRACT

While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203-205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and omicron variants in an early pandemic (WA-1) background, we find that the R203K+G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. The R203K+G204R mutant corresponds with increased viral RNA and protein both in vitro and in vivo. Importantly, the R203K+G204R mutation increases nucleocapsid phosphorylation and confers resistance to inhibition of the GSK-3 kinase, providing a molecular basis for increased virus replication. Notably, analogous alanine substitutions at positions 203+204 also increase SARS-CoV-2 replication and augment phosphorylation, suggesting that infection is enhanced through ablation of the ancestral 'RG' motif. Overall, these results demonstrate that variant mutations outside spike are key components in SARS-CoV-2's continued adaptation to human infection.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Glycogen Synthase Kinase 3 , Humans , Mutation , Nucleocapsid , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
13.
bioRxiv ; 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-34671771

ABSTRACT

While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203-205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and omicron variants in an early pandemic (WA-1) background, we find that the R203K+G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. The R203K+G204R mutant corresponds with increased viral RNA and protein both in vitro and in vivo . Importantly, the R203K+G204R mutation increases nucleocapsid phosphorylation and confers resistance to inhibition of the GSK-3 kinase, providing a molecular basis for increased virus replication. Notably, analogous alanine substitutions at positions 203+204 also increase SARS-CoV-2 replication and augment phosphorylation, suggesting that infection is enhanced through ablation of the ancestral 'RG' motif. Overall, these results demonstrate that variant mutations outside spike are key components in SARS-CoV-2's continued adaptation to human infection. AUTHOR SUMMARY: Since its emergence, SARS-CoV-2 has continued to adapt for human infection resulting in the emergence of variants with unique genetic profiles. Most studies of genetic variation have focused on spike, the target of currently available vaccines, leaving the importance of variation elsewhere understudied. Here, we characterize a highly variable motif at residues 203-205 in nucleocapsid. Recreating the prominent nucleocapsid R203K+G204R mutation in an early pandemic background, we show that this mutation is alone sufficient to enhance SARS-CoV-2 replication and pathogenesis. We also link augmentation of SARS-CoV-2 infection by the R203K+G204R mutation to its modulation of nucleocapsid phosphorylation. Finally, we characterize an analogous alanine double substitution at positions 203-204. This mutant was found to mimic R203K+G204R, suggesting augmentation of infection occurs by disrupting the ancestral sequence. Together, our findings illustrate that mutations outside of spike are key components of SARS-CoV-2's adaptation to human infection.

14.
Article in English | LILACS-Express | LILACS | ID: biblio-1406878

ABSTRACT

ABSTRACT Human Adenovirus 36 (HAdV-36) has been related to diverse effects on metabolism and may attenuate the lipid accumulation in kidneys with increased adiposity. Some of these effects would be related to viral persistence. However, until now, a model of persistent in vitro infection by HAdV-36 is unknown. In this study, we examined the cells of the Vero lineage to explore their permissiveness to long-term HAdV-36 infection. HAdV-36 was productively replicated in Vero cells and maintained long-term infection for up to 35 cell passages. A subculture was obtained from the cells that survived the primary infection at a low MOI (0.5). The production of the extracellular infectious virus with titers ranging from 104 to 106 TCID50/mL and DNA-bearing cells was detected. In long-term infected cells, the intracellular distribution of viral antigen was demonstrated by performing immunolocalization (IFI) and expression of cell-viral antigen in 50% of cells by flow cytometry, using anti-HAdV-36 hyperimmune rabbit serum. Furthermore, E1a and E4orf1 genes in long-term infected passages showed a decreasing trend. Our preliminary results reveal that renal epithelial monkey cells are permissive for the productive infection of HAdV-36. Vero cell culture long-term infection might be a promising model for addressing the fundamental aspects of the HAdV-36 biology that cannot reveal broadly-used cultures, which do not maintain long-term infection in primary or transformed cells.

15.
PLoS Biol ; 19(11): e3001284, 2021 11.
Article in English | MEDLINE | ID: mdl-34735434

ABSTRACT

The emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a pandemic causing significant damage to public health and the economy. Efforts to understand the mechanisms of Coronavirus Disease 2019 (COVID-19) have been hampered by the lack of robust mouse models. To overcome this barrier, we used a reverse genetic system to generate a mouse-adapted strain of SARS-CoV-2. Incorporating key mutations found in SARS-CoV-2 variants, this model recapitulates critical elements of human infection including viral replication in the lung, immune cell infiltration, and significant in vivo disease. Importantly, mouse adaptation of SARS-CoV-2 does not impair replication in human airway cells and maintains antigenicity similar to human SARS-CoV-2 strains. Coupled with the incorporation of mutations found in variants of concern, CMA3p20 offers several advantages over other mouse-adapted SARS-CoV-2 strains. Using this model, we demonstrate that SARS-CoV-2-infected mice are protected from lethal challenge with the original Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), suggesting immunity from heterologous Coronavirus (CoV) strains. Together, the results highlight the use of this mouse model for further study of SARS-CoV-2 infection and disease.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , COVID-19/pathology , COVID-19 Vaccines/therapeutic use , Cell Line , Disease Models, Animal , Female , Humans , Lung/pathology , Mice , Mice, Inbred BALB C , Reverse Genetics , Serial Passage , Virus Replication
16.
bioRxiv ; 2021 May 04.
Article in English | MEDLINE | ID: mdl-33972939

ABSTRACT

The emergence of SARS-CoV-2 has resulted in a worldwide pandemic causing significant damage to public health and the economy. Efforts to understand the mechanisms of COVID-19 disease have been hampered by the lack of robust mouse models. To overcome this barrier, we utilized a reverse genetic system to generate a mouse-adapted strain of SARS-CoV-2. Incorporating key mutations found in SARSCoV-2 variants, this model recapitulates critical elements of human infection including viral replication in the lung, immune cell infiltration, and significant in vivo disease. Importantly, mouse-adaptation of SARS-CoV-2 does not impair replication in human airway cells and maintains antigenicity similar to human SARS-CoV-2 strains. Utilizing this model, we demonstrate that SARS-CoV-2 infected mice are protected from lethal challenge with the original SARS-CoV, suggesting immunity from heterologous CoV strains. Together, the results highlight the utility of this mouse model for further study of SARS-CoV-2 infection and disease.

17.
Rev. cuba. anestesiol. reanim ; 18(3): e500, sept.-dic. 2019. graf
Article in Spanish | LILACS, CUMED | ID: biblio-1093117

ABSTRACT

Introducción: La cirugía video laparoscópica posee beneficios para los pacientes. Las intervenciones con tiempos reducidos implican técnicas anestésicas ajustadas a ellos, lo que determina no pocas dificultades cuando el dolor aparece en la práctica asistencial. El hallazgo de pacientes con dolor posoperatorio inmediato motivó la realización del estudio. Objetivo: Evaluar la efectividad de un opioide de acción rápida como analgésico posoperatorio inmediato administrado vía intranasal. Método: Se desarrolló un estudio causiexpereimental, con dos grupos de enfermos (100 cada uno) a los que se les realizó colecistectomía por vía laparoscópica en el Hospital Militar Central Dr. Luis Díaz Soto, a los 100 pacientes en estudio se les administró FENTANYL 50 mcg intranasal en gotas al llegar a la sala de cuidados posoperatorios. Las variables de estudio incluyeron el dolor según la Escala Visual Análoga (EVA), el tiempo de inicio de acción del opioide y la analgesia lograda, así como los efectos derivados de su empleo. Resultados: la edad promedio fue 51 ± 2, predominó el sexo masculino con 55 por ciento de los casos, se evidenció una EVA promedio de todos los casos iniciales en 3. Al alta, 100 por ciento de los pacientes del grupo estudio poseían analgesia excelente (EVA 2), mientras que los controles poseían una EVA promedio en 5. El prurito fue el evento adverso más frecuente tras la administración de FENTANYL intranasal. Conclusiones: El empleo de un opioide de acción rápida (FENTANYL) es una medida de control del dolor posoperatorio excelente y segura(AU)


Introduction: Videolaparoscopic surgery has benefits for patients. Interventions with reduced times involve anesthetic techniques adjusted to them, which determines many difficulties when pain manifests in the care practice. The finding of patients with immediate postoperative pain motivated the study. Objective: To evaluate the effectiveness of a fast-acting opioid as an immediate postoperative analgesic administered by intranasal way. Method: A quasiexperimental study was developed, with two groups of patients (100 each) who underwent laparoscopic cholecystectomy at Dr. Luis Díaz Soto Central Military Hospital. The hundred patients under study were administered fentanyl 50 mcg as intranasal drops upon arriving at the postoperative care room. The study variables included pain according to the Visual Analogue Scale (VAS), the onset time of opioid action, and the analgesia achieved, as well as the effects derived from its use. Results: The average age was 51 ± 2, the male sex predominated with 55 percent of the cases, an average VAS of all the initial cases was evidenced in three. At discharge, 100 percent of the patients in the study group had excellent analgesia (VAS 2), whereas the controls had an average VAS in 5. Pruritus was the most frequent adverse event after the administration of intranasal fentanyl. Conclusions: The use of a fast-acting opioid (fentanyl) is an excellent and safe postoperative pain control measure(AU)


Subject(s)
Humans , Pain, Postoperative/prevention & control , Pain, Postoperative/drug therapy , Cholecystectomy, Laparoscopic/methods , Analgesics/therapeutic use , Fentanyl/therapeutic use , Non-Randomized Controlled Trials as Topic
18.
Rev. cuba. anestesiol. reanim ; 18(3): e505, sept.-dic. 2019.
Article in Spanish | LILACS, CUMED | ID: biblio-1093115

ABSTRACT

Introducción: El paro cardiaco en gestantes y la cesárea perimorten son infrecuentes. Estas constituyen catástrofes médicas que precisan atención inmediata. Realizar este proceder según normas adecuadas brinda mejores opciones a la madre y el feto. Cuba presta especial atención al binomio materno fetal, para ello emplea grandes recursos humanos y tecnológicos. Objetivo: Actualizar la información acerca de cesárea perimorten. Métodos: Se realizó una revisión en bases de datos que permitiese encontrar descripciones epidemiológicas, informes de casos, series de casos, comunicaciones personales, y estudios en diferentes contextos sanitarios, los cuales sirvieran de evidencia científica del tema. Resultados: El paro cardiaco en embarazadas es un evento infrecuente, la realización de una cesárea perimorten con tiempo reducido (4-5 min) resultó una opción efectiva. El trabajo del equipo multidisciplinario basado en protocolos tiene una función que beneficia tanto a la madre como al feto. Actualmente se recomienda el concepto de histerotomía resucitadora que refleja la optimización de los esfuerzos realizados en la reanimación. La muerte materna por anestesia es una emergencia médica que requiere especial atención. Existen asociaciones médicas que preconizan las escalas de cuidados precoces en gestantes graves, con un entrenamiento actualizado y con estrategias novedosas para obtener mejores resultados. Conclusiones: El estudio del paro cardiaco en gestantes, la cesárea perimorten y la muerte materna relacionada con la anestesia son importantes. La creación de grupos multidisciplinarios y grupos bien entrenados son la mejor opción en estas circunstancias. Se recomienda incrementar el estudio y entrenamiento para ofrecer las mejores opciones al binomio materno-fetal(AU)


Introduction: Cardiac arrest in pregnant women and perimortem cesarean section are rare. These are medical catastrophes that require immediate attention. Performing this procedure according to adequate standards provides better options for both the mother and the fetus. Cuba pays special attention to the maternal-fetal binomial, for which large amounts of human and technological resources are used. Objective: To update the information about perimortem cesarean section. Methods: A database review was carried out to find epidemiological descriptions, case reports, case series, personal communications, and studies in different health contexts, which would serve as scientific evidence on the subject. Results: Cardiac arrest in pregnant women is a rare event; the performance of a perimortem cesarean section with reduced time (4-5 min) was an effective option. The work of the multidisciplinary team based on protocols has a function that benefits both the mother and the fetus. Currently, the concept of resuscitative hysterotomy is recommended, which reflects the optimization of the resuscitation efforts. Maternal death by anesthesia is a medical emergency that requires special attention. There are medical associations that advocate the scales of early care in pregnant women, with updated training and innovative strategies to obtain better outcomes. Conclusions: The study of cardiac arrest in pregnant women, perimortem caesarean section and anesthesia-related maternal death are important. The creation of multidisciplinary groups and well-trained groups are the best option in these circumstances. It is recommended to increase the study and training to offer the best options to the maternal-fetal binomial(AU)


Subject(s)
Humans , Female , Pregnancy , Pregnancy Complications/prevention & control , Cesarean Section/mortality , Hysterotomy/methods , Maternal Death/prevention & control , Heart Arrest/complications , Anesthesia, Obstetrical/mortality , Pregnancy Complications/mortality
19.
Parasit Vectors ; 11(1): 564, 2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30373630

ABSTRACT

BACKGROUND: Blastocystis spp. are the most prevalent intestinal eukaryotes identified in humans, with at least 17 genetic subtypes (ST) based on genes coding for the small-subunit ribosomal RNA (18S). It has been argued that the 18S gene should not be the marker of choice to discriminate between STs of these strains because this marker exhibits high intra-genomic polymorphism. By contrast, pyruvate:ferredoxin oxidoreductase (PFOR) is a relevant enzyme involved in the core energy metabolism of many anaerobic microorganisms such as Blastocystis, which, in other protozoa, shows more polymorphisms than the 18S gene and thus may offer finer discrimination when trying to identify Blastocystis ST. Therefore, the objective of the present study was to assess the suitability of the PFOR gene as an additional marker to discriminate among Blastocystis strains or subtypes from symptomatic carrier children. METHODS: Faecal samples from 192 children with gastrointestinal symptoms from the State of Mexico were submitted for coprological study. Twenty-one of these samples were positive only for Blastocystis spp.; these samples were analysed by PCR sequencing of regions of the 18S and PFOR genes. The amplicons were purified and sequenced; afterwards, both markers were assessed for genetic diversity. RESULTS: The 18S analysis showed the following frequencies of Blastocystis subtypes: ST3 = 43%; ST1 = 38%; ST2 = 14%; and ST7 = 5%. Additionally, using subtype-specific primer sets, two samples showed mixed Blastocystis ST1 and ST2 infection. For PFOR, Bayesian inference revealed the presence of three clades (I-III); two of them grouped different ST samples, and one grouped six samples of ST3 (III). Nucleotide diversity (π) and haplotype polymorphism (θ) for the 18S analysis were similar for ST1 and ST2 (π = ~0.025 and θ = ~0.036); remarkably, ST3 showed almost 10-fold lower values. For PFOR, a similar trend was found: clade I and II had π = ~0.05 and θ = ~0.05, whereas for clade III, the values were almost 6-fold lower. CONCLUSIONS: Although the fragment of the PFOR gene analysed in the present study did not allow discrimination between Blastocystis STs, this marker grouped the samples in three clades with strengthened support, suggesting that PFOR may be under different selective pressures and evolutionary histories than the 18S gene. Interestingly, the ST3 sequences showed lower variability with probable purifying selection in both markers, meaning that evolutionary forces drive differential processes among Blastocystis STs.


Subject(s)
Blastocystis Infections/parasitology , Blastocystis/classification , Genetic Variation , Intestinal Diseases, Parasitic/parasitology , Pyruvate Synthase/genetics , Adolescent , Bayes Theorem , Blastocystis/enzymology , Blastocystis/genetics , Child , Child, Preschool , Feces/parasitology , Female , Haplotypes , Humans , Infant , Male , Mexico , Phylogeny , Polymorphism, Genetic , Protozoan Proteins/genetics
20.
Iran J Parasitol ; 12(4): 470-481, 2017.
Article in English | MEDLINE | ID: mdl-29317871

ABSTRACT

BACKGROUND: Drugs' pharmacokinetics and pharmacodynamics can be affected by diverse genetic variations, within which simple nucleotide polymorphisms (SNPs) are the most common. Genetic variability is one of the factors that could explain questions like why a given drug does not have the desired effect or why do adverse drug reactions arise. METHODS: In this retrospective observational study, literature search limits were set within PubMed database as well as the epidemiological bulletins published by the Mexican Ministry of Health, from Jan 1st 2001 to Mar 31st 2017 (16 years). RESULTS: Metabolism of antiparasitic drugs and their interindividual responses are mainly modified by variations in cytochrome P450 enzymes. These enzymes show high frequencies of polymorphic variability thus affecting the expression of CYP2C, CYP2A, CYP2A6, CYP2D6, CYP2E6 and CYP2A6 isoforms. Research in this field opens the door to new personalized treatment approaches in medicine. CONCLUSION: Clinical and pharmacological utility yield by applying pharmacogenetics to antiparasitic treatments is not intended as a mean to improve the prescription process, but to select or exclude patients that could present adverse drug reactions as well as to evaluate genetic alterations which result in a diversity of responses, ultimately seeking to provide a more effective and safe treatment; therefore choosing a proper dose for the appropriate patient and the optimal treatment duration. Furthermore, pharmacogenetics assists in the development of vaccines. In other words, the aim of this discipline is to find therapeutic targets allowing personalized treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...