Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38408003

ABSTRACT

Identifying conserved (similar) three-dimensional patterns among a set of proteins can be helpful for the rational design of polypharmacological drugs. Some available tools allow this identification from a limited perspective, only considering the available information, such as known binding sites or previously annotated structural motifs. Thus, these approaches do not look for similarities among all putative orthosteric and or allosteric bindings sites between protein structures. To overcome this tech-weakness Geomfinder was developed, an algorithm for the estimation of similarities between all pairs of three-dimensional amino acids patterns detected in any two given protein structures, which works without information about their known patterns. Even though Geomfinder is a functional alternative to compare small structural proteins, it is computationally unfeasible for the case of large protein processing and the algorithm needs to improve its performance. This work presents several parallel versions of the Geomfinder to exploit SMPs, distributed memory systems, hybrid version of SMP and distributed memory systems, and GPU based systems. Results show significant improvements in performance as compared to the original version and achieve up to 24.5x speedup when analyzing proteins of average size and up to 95.4x in larger proteins.


Subject(s)
Algorithms , Computational Biology , Protein Conformation , Proteins , Proteins/chemistry , Proteins/metabolism , Computational Biology/methods , Databases, Protein , Sequence Analysis, Protein/methods , Models, Molecular
2.
Front Pharmacol ; 13: 855792, 2022.
Article in English | MEDLINE | ID: mdl-35370665

ABSTRACT

The identification of similar three-dimensional (3D) amino acid patterns among different proteins might be helpful to explain the polypharmacological profile of many currently used drugs. Also, it would be a reasonable first step for the design of novel multitarget compounds. Most of the current computational tools employed for this aim are limited to the comparisons among known binding sites, and do not consider several additional important 3D patterns such as allosteric sites or other conserved motifs. In the present work, we introduce Geomfinder2.0, which is a new and improved version of our previously described algorithm for the deep exploration and discovery of similar and druggable 3D patterns. As compared with the original version, substantial improvements that have been incorporated to our software allow: (i) to compare quaternary structures, (ii) to deal with a list of pairs of structures, (iii) to know how druggable is the zone where similar 3D patterns are detected and (iv) to significantly reduce the execution time. Thus, the new algorithm achieves up to 353x speedup as compared to the previous sequential version, allowing the exploration of a significant number of quaternary structures in a reasonable time. In order to illustrate the potential of the updated Geomfinder version, we show a case of use in which similar 3D patterns were detected in the cardiac ions channels NaV1.5 and TASK-1. These channels are quite different in terms of structure, sequence and function and both have been regarded as important targets for drugs aimed at treating atrial fibrillation. Finally, we describe the in vitro effects of tafluprost (a drug currently used to treat glaucoma, which was identified as a novel putative ligand of NaV1.5 and TASK-1) upon both ion channels' activity and discuss its possible repositioning as a novel antiarrhythmic drug.

3.
PLoS Comput Biol ; 18(2): e1009703, 2022 02.
Article in English | MEDLINE | ID: mdl-35143480

ABSTRACT

Is it possible to learn and create a first Hidden Markov Model (HMM) without programming skills or understanding the algorithms in detail? In this concise tutorial, we present the HMM through the 2 general questions it was initially developed to answer and describe its elements. The HMM elements include variables, hidden and observed parameters, the vector of initial probabilities, and the transition and emission probability matrices. Then, we suggest a set of ordered steps, for modeling the variables and illustrate them with a simple exercise of modeling and predicting transmembrane segments in a protein sequence. Finally, we show how to interpret the results of the algorithms for this particular problem. To guide the process of information input and explicit solution of the basic HMM algorithms that answer the HMM questions posed, we developed an educational webserver called HMMTeacher. Additional solved HMM modeling exercises can be found in the user's manual and answers to frequently asked questions. HMMTeacher is available at https://hmmteacher.mobilomics.org, mirrored at https://hmmteacher1.mobilomics.org. A repository with the code of the tool and the webpage is available at https://gitlab.com/kmilo.f/hmmteacher.


Subject(s)
Markov Chains , Algorithms , Probability , Software
4.
Molecules ; 26(4)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672700

ABSTRACT

Plants synthesize a large number of natural products, many of which are bioactive and have practical values as well as commercial potential. To explore this vast structural diversity, we present PSC-db, a unique plant metabolite database aimed to categorize the diverse phytochemical space by providing 3D-structural information along with physicochemical and pharmaceutical properties of the most relevant natural products. PSC-db may be utilized, for example, in qualitative estimation of biological activities (Quantitative Structure-Activity Relationship, QSAR) or massive docking campaigns to identify new bioactive compounds, as well as potential binding sites in target proteins. PSC-db has been implemented using the open-source PostgreSQL database platform where all compounds with their complementary and calculated information (classification, redundant names, unique IDs, physicochemical properties, etc.) were hierarchically organized. The source organism for each compound, as well as its biological activities against protein targets, cell lines and different organism were also included. PSC-db is freely available for public use and is hosted at the Universidad de Talca.


Subject(s)
Databases, Chemical , Phytochemicals/chemistry , Plants/chemistry , Molecular Docking Simulation , Phytochemicals/metabolism , Plants/metabolism , Quantitative Structure-Activity Relationship
5.
Bioinformatics ; 36(9): 2912-2914, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31926012

ABSTRACT

MOTIVATION: Root mean square deviation (RMSD) is one of the most useful and straightforward features for structural comparison between different conformations of the same molecule. Commonly, protein-ligand docking programs have included some utilities that allow the calculation of this value; however, they only work efficiently when exists a complete atom label equivalence between the evaluated conformations. RESULTS: We present LigRMSD, a free web-server for the automatic matching and RMSD calculations among identical or similar chemical compounds. This server allows the user to submit only a pair of identical or similar molecules or dataset of similar compounds to compare their three-dimensional conformations. AVAILABILITY AND IMPLEMENTATION: LigRMSD can be freely accessed at https://ligrmsd.appsbio.utalca.cl. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Proteins , Software , Computers , Ligands , Molecular Conformation
6.
Int J Mol Sci ; 20(13)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261733

ABSTRACT

Discovering conserved three-dimensional (3D) patterns among protein structures may provide valuable insights into protein classification, functional annotations or the rational design of multi-target drugs. Thus, several computational tools have been developed to discover and compare protein 3D-patterns. However, most of them only consider previously known 3D-patterns such as orthosteric binding sites or structural motifs. This fact makes necessary the development of new methods for the identification of all possible 3D-patterns that exist in protein structures (allosteric sites, enzyme-cofactor interaction motifs, among others). In this work, we present 3D-PP, a new free access web server for the discovery and recognition all similar 3D amino acid patterns among a set of proteins structures (independent of their sequence similarity). This new tool does not require any previous structural knowledge about ligands, and all data are organized in a high-performance graph database. The input can be a text file with the PDB access codes or a zip file of PDB coordinates regardless of the origin of the structural data: X-ray crystallographic experiments or in silico homology modeling. The results are presented as lists of sequence patterns that can be further analyzed within the web page. We tested the accuracy and suitability of 3D-PP using two sets of proteins coming from the Protein Data Bank: (a) Zinc finger containing and (b) Serotonin target proteins. We also evaluated its usefulness for the discovering of new 3D-patterns, using a set of protein structures coming from in silico homology modeling methodologies, all of which are overexpressed in different types of cancer. Results indicate that 3D-PP is a reliable, flexible and friendly-user tool to identify conserved structural motifs, which could be relevant to improve the knowledge about protein function or classification. The web server can be freely utilized at https://appsbio.utalca.cl/3d-pp/.


Subject(s)
Conserved Sequence , Sequence Analysis, Protein/methods , Software , Allosteric Site , Amino Acid Sequence , Animals , Humans , Protein Conformation
7.
J Cheminform ; 8: 19, 2016.
Article in English | MEDLINE | ID: mdl-27092185

ABSTRACT

BACKGROUND: Since the structure of proteins is more conserved than the sequence, the identification of conserved three-dimensional (3D) patterns among a set of proteins, can be important for protein function prediction, protein clustering, drug discovery and the establishment of evolutionary relationships. Thus, several computational applications to identify, describe and compare 3D patterns (or motifs) have been developed. Often, these tools consider a 3D pattern as that described by the residues surrounding co-crystallized/docked ligands available from X-ray crystal structures or homology models. Nevertheless, many of the protein structures stored in public databases do not provide information about the location and characteristics of ligand binding sites and/or other important 3D patterns such as allosteric sites, enzyme-cofactor interaction motifs, etc. This makes necessary the development of new ligand-independent methods to search and compare 3D patterns in all available protein structures. RESULTS: Here we introduce Geomfinder, an intuitive, flexible, alignment-free and ligand-independent web server for detailed estimation of similarities between all pairs of 3D patterns detected in any two given protein structures. We used around 1100 protein structures to form pairs of proteins which were assessed with Geomfinder. In these analyses each protein was considered in only one pair (e.g. in a subset of 100 different proteins, 50 pairs of proteins can be defined). Thus: (a) Geomfinder detected identical pairs of 3D patterns in a series of monoamine oxidase-B structures, which corresponded to the effectively similar ligand binding sites at these proteins; (b) we identified structural similarities among pairs of protein structures which are targets of compounds such as acarbose, benzamidine, adenosine triphosphate and pyridoxal phosphate; these similar 3D patterns are not detected using sequence-based methods; (c) the detailed evaluation of three specific cases showed the versatility of Geomfinder, which was able to discriminate between similar and different 3D patterns related to binding sites of common substrates in a range of diverse proteins. CONCLUSIONS: Geomfinder allows detecting similar 3D patterns between any two pair of protein structures, regardless of the divergency among their amino acids sequences. Although the software is not intended for simultaneous multiple comparisons in a large number of proteins, it can be particularly useful in cases such as the structure-based design of multitarget drugs, where a detailed analysis of 3D patterns similarities between a few selected protein targets is essential.

SELECTION OF CITATIONS
SEARCH DETAIL
...