Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5022, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37596311

ABSTRACT

While microscopy-based cellular assays, including microfluidics, have significantly advanced over the last several decades, there has not been concurrent development of widely-accessible techniques to analyze time-dependent microscopy data incorporating phenomena such as fluid flow and dynamic cell adhesion. As such, experimentalists typically rely on error-prone and time-consuming manual analysis, resulting in lost resolution and missed opportunities for innovative metrics. We present a user-adaptable toolkit packaged into the open-source, standalone Interactive Cellular assay Labeled Observation and Tracking Software (iCLOTS). We benchmark cell adhesion, single-cell tracking, velocity profile, and multiscale microfluidic-centric applications with blood samples, the prototypical biofluid specimen. Moreover, machine learning algorithms characterize previously imperceptible data groupings from numerical outputs. Free to download/use, iCLOTS addresses a need for a field stymied by a lack of analytical tools for innovative, physiologically-relevant assays of any design, democratizing use of well-validated algorithms for all end-user biomedical researchers who would benefit from advanced computational methods.


Subject(s)
Artificial Intelligence , Microfluidics , Microscopy , Software , Blood Cells
2.
Lab Chip ; 22(8): 1565-1575, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35315465

ABSTRACT

Characterization of blood flow rheology in hematological disorders is critical for understanding disease pathophysiology. Existing methods to measure blood rheological parameters are limited in their physiological relevance, and there is a need for new tools that focus on the microcirculation and extract properties at finer resolution than overall flow resistance. Herein, we present a method that combines microfluidic systems and powerful object-tracking computational technologies with mathematical modeling to separate the red blood cell flow profile into a bulk component and a wall component. We use this framework to evaluate differential contributions of effective viscosity and wall friction to the overall resistance in blood from patients with sickle cell disease (SCD) under a range of oxygen tensions. Our results demonstrate that blood from patients with SCD exhibits elevated frictional and viscous resistances at all physiologic oxygen tensions. Additionally, the viscous resistance increases more rapidly than the frictional resistance as oxygen tension decreases, which may confound analyses that extract only flow velocities or overall flow resistances. Furthermore, we evaluate the impact of transfusion treatments on the components of the resistance, revealing patient variability in blood properties that may improve our understanding of the heterogeneity of clinical responses to such treatments. Overall, our system provides a new method to analyze patient-specific blood properties and can be applied to a wide range of hematological and vascular disorders.


Subject(s)
Anemia, Sickle Cell , Microfluidic Analytical Techniques , Friction , Humans , Oxygen , Plant Extracts , Rheology , Viscosity
3.
ACS Macro Lett ; 10(1): 60-64, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-35548992

ABSTRACT

Polymerization-induced microphase separation has been used to prepare solid cross-linked monoliths containing bicontinuous and nanostructured polymer domains. We use this process to fabricate a monolith containing either a negatively or positively charged polyelectrolyte domain inside of the neutral styrene/divinylbenzene-derived matrix. First, the materials are made with a neutral pre-ionic polymer containing masked charged groups. The monoliths are then functionalized to a charged state by treatment with trimethylamine; small-angle X-ray scattering shows no significant morphological change in the microphase-separated structure upon postpolymerization modification. By exchanging dyes with the counterions in the material, we corroborated the continuity of the charged domains. Using ion-exchange capacity measurements, we estimate the number of accessible charges within the material based on macro-chain transfer agent molar mass and loading.

4.
Biophys J ; 119(11): 2307-2315, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33096079

ABSTRACT

In sickle cell disease, aberrant blood flow due to oxygen-dependent changes in red cell biomechanics is a key driver of pathology. Most studies to date have focused on the potential role of altered red cell deformability and blood rheology in precipitating vaso-occlusive crises. Numerous studies, however, have shown that sickle blood flow is affected even at high oxygen tensions, suggesting a potentially systemic role for altered blood flow in driving pathologies, including endothelial dysfunction, ischemia, and stroke. In this study, we applied a combined experimental-computation approach that leveraged an experimental platform that quantifies sickle blood velocity fields under a range of oxygen tensions and shear rates. We computationally fitted a continuum model to our experimental data to generate physics-based parameters that capture patient-specific rheological alterations. Our results suggest that sickle blood flow is altered systemically, from the arterial to the venous circulation. We also demonstrated the application of this approach as a tool to design patient-specific transfusion regimens. Finally, we demonstrated that patient-specific rheological parameters can be combined with patient-derived vascular models to identify patients who are at higher risk for cerebrovascular complications such as aneurysm and stroke. Overall, this study highlights that sickle blood flow is altered systemically, which can drive numerous pathologies, and this study demonstrates the potential utility of an experimentally parameterized continuum model as a predictive tool for patient-specific care.


Subject(s)
Anemia, Sickle Cell , Erythrocyte Deformability , Erythrocytes , Humans , Rheology
5.
APL Bioeng ; 3(4): 046102, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31803859

ABSTRACT

The pathology of sickle cell disease begins with the polymerization of intracellular hemoglobin under low oxygen tension, which leads to increased blood effective viscosity and vaso-occlusion. However, it has remained unclear how single-cell changes propagate up to the scale of bulk blood effective viscosity. Here, we use a custom microfluidic system to investigate how the increase in the stiffness of individual cells leads to an increase in the shear stress required for the same fluid strain in a suspension of softer cells. We characterize both the shear-rate dependence and the oxygen-tension dependence of the effective viscosity of sickle cell blood, and we assess the effect of the addition of increasing fractions of normal cells whose material properties are independent of oxygen tension, a scenario relevant to the treatment of sickle patients with blood transfusion. For untransfused sickle cell blood, we find an overall increase in effective viscosity at all oxygen tensions and shear rates along with an attenuation in the degree of shear-thinning achieved at the lowest oxygen tensions. We also find that in some cases, even a small fraction of transfused blood cells restores the shape of the shear-thinning relationship, though not the overall baseline effective viscosity. These results suggest that untransfused sickle cell blood will show the most extreme relative rheologic impairment in regions of high shear and that introducing even small fractions of normal blood cells may help retain some shear-thinning capability though without addressing a baseline relative increase in effective viscosity independent of shear.

6.
Proc Natl Acad Sci U S A ; 116(50): 25236-25242, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31767751

ABSTRACT

Sickle cell disease (SCD) is caused by a variant hemoglobin molecule that polymerizes inside red blood cells (RBCs) in reduced oxygen tension. Treatment development has been slow for this typically severe disease, but there is current optimism for curative gene transfer strategies to induce expression of fetal hemoglobin or other nonsickling hemoglobin isoforms. All SCD morbidity and mortality arise directly or indirectly from polymer formation in individual RBCs. Identifying patients at highest risk of complications and treatment candidates with the greatest curative potential therefore requires determining the amount of polymer in individual RBCs under controlled oxygen. Here, we report a semiquantitative measurement of hemoglobin polymer in single RBCs as a function of oxygen. The method takes advantage of the reduced oxygen affinity of hemoglobin polymer to infer polymer content for thousands of RBCs from their overall oxygen saturation. The method enables approaches for SCD treatment development and precision medicine.


Subject(s)
Anemia, Sickle Cell/metabolism , Erythrocytes/metabolism , Hemoglobin, Sickle/metabolism , Hemoglobins/metabolism , High-Throughput Screening Assays/methods , Oxygen/metabolism , Erythrocytes/chemistry , Erythrocytes/cytology , Hemoglobin, Sickle/chemistry , Hemoglobins/chemistry , Humans , Kinetics , Oxygen/chemistry , Single-Cell Analysis
7.
Proc Natl Acad Sci U S A ; 112(44): 13573-8, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26487682

ABSTRACT

Leiomodin 2 (Lmod2) is an actin-binding protein that has been implicated in the regulation of striated muscle thin filament assembly; its physiological function has yet to be studied. We found that knockout of Lmod2 in mice results in abnormally short thin filaments in the heart. We also discovered that Lmod2 functions to elongate thin filaments by promoting actin assembly and dynamics at thin filament pointed ends. Lmod2-KO mice die as juveniles with hearts displaying contractile dysfunction and ventricular chamber enlargement consistent with dilated cardiomyopathy. Lmod2-null cardiomyocytes produce less contractile force than wild type when plated on micropillar arrays. Introduction of GFP-Lmod2 via adeno-associated viral transduction elongates thin filaments and rescues structural and functional defects observed in Lmod2-KO mice, extending their lifespan to adulthood. Thus, to our knowledge, Lmod2 is the first identified mammalian protein that functions to elongate actin filaments in the heart; it is essential for cardiac thin filaments to reach a mature length and is required for efficient contractile force and proper heart function during development.


Subject(s)
Actin Cytoskeleton/metabolism , Cardiomyopathy, Dilated/metabolism , Cytoskeletal Proteins/metabolism , Muscle Proteins/metabolism , Myocardium/metabolism , Actin Cytoskeleton/genetics , Animals , Animals, Newborn , Cardiomyopathy, Dilated/embryology , Cardiomyopathy, Dilated/genetics , Cells, Cultured , Cytoskeletal Proteins/genetics , Fluorescence Recovery After Photobleaching , Genes, Lethal/genetics , Heart/embryology , Heart/physiopathology , Immunoblotting , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice, Knockout , Mice, Transgenic , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Muscle Contraction/genetics , Muscle Contraction/physiology , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myocardium/pathology , Myocardium/ultrastructure , Sarcomeres/genetics , Sarcomeres/metabolism , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...