Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Free Radic Biol Med ; 201: 66-75, 2023 05 20.
Article in English | MEDLINE | ID: mdl-36924852

ABSTRACT

Hydrogen peroxide is the main metabolite effective in redox regulation and it is considered an insulinomimetic agent, with insulin signalling being essential for normal mitochondrial function in cardiomyocytes. Therefore, the aim of this work was to deeply analyse the heart mitochondrial H2O2 metabolism, in the early stage of type 1 diabetes. Diabetes was induced by Streptozotocin (STZ, single dose, 60 mg × kg-1, ip.) in male Wistar rats and the animals were sacrificed 10 days after injection. Mitochondrial membrane potential and ATP production, using malate-glutamate as substrates, in the heart of diabetic animals were like the ones observed in control group. Mn-SOD activity was lower (15%) in the heart of diabetic rats even though its expression was increased (29%). The increment in heart mitochondrial H2O2 production (117%) in diabetic animals was accompanied by an enhancement in the activities and expressions of glutathione peroxidase (26% and 42%) and of catalase (200% and 133%), with no changes in the peroxiredoxin activity, leading to [H2O2]ss ∼40 nM. Heart mitochondrial lipid peroxidation and protein nitration were higher in STZ-injected animals (45% and 42%) than in control group. The mitochondrial membrane potential and ATP production preservation suggest the absence of irreversible damage at this early stage of diabetes 1. The increase in mitochondrial [H2O2]ss above the physiological range, but still below supraphysiological concentration (∼100 nM) seems to be part of the adaptive response triggered in cardiomyocytes due to the absence of insulin. The signs of mitochondrial dysfunction observed in this very early stage of diabetes are consistent with the mitochondrial entity called ″complex I syndrome″.


Subject(s)
Diabetes Mellitus, Experimental , Hydrogen Peroxide , Rats , Male , Animals , Hydrogen Peroxide/metabolism , Rats, Wistar , Diabetes Mellitus, Experimental/metabolism , Oxidative Stress , Antioxidants/pharmacology , Mitochondria/metabolism , Insulin/metabolism , Adenosine Triphosphate/metabolism
2.
Rev. argent. cardiol ; 89(2): 92-97, abr. 2021. tab, graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1356854

ABSTRACT

RESUMEN Introducción: Resultados de nuestro laboratorio sugieren que la disfunción mitocondrial en el corazón precede a la falla miocárdica asociada a la hiperglucemia sostenida. Objetivo: Estudiar los eventos tempranos que ocurren en las mitocondrias de corazón en un modelo de diabetes mellitus tipo 1. Materiales y métodos: Ratas Wistar macho fueron inyectadas con estreptozotocina (STZ; 60 mg/kg, ip) y sacrificadas 10 o 14 días posinyección. Se obtuvo la fracción mitocondrial de corazón. Resultados: El consumo de O2 en estado 3 en presencia de malato-glutamato (21%) o succinato (16%) y las actividades de los complejos I-III (27%), II-III (24%) y IV (22%) fueron menores en los animales diabéticos a los 14 días posinyección. Cuando los animales se sacrificaron al día 10, solo el consumo de O2 en estado 3 en presencia de sustratos del complejo I (23%) y su control respiratorio (30%) fueron menores en las ratas inyectadas con STZ, de acuerdo con una reducción en la actividad del complejo I-III (17%). Estos cambios se acompañaron de un aumento en las velocidades de producción de H2O2 (117%), NO (30%) y ONOO- (∼225%), en la expresión de mtNOS (29%) y en la [O2 -]ss (∼150%) y [NO]ss (∼30%), junto con una disminución de la actividad de la Mn-SOD (15%) y la [GSSG+GSH]mitocondrial (28%), sin cambios en la expresión de PGC-1α. Conclusión: La disfunción del complejo I y el aumento en la generación de H2O2, NO y ONOO- pueden considerarse señales subcelulares prodrómicas del deterioro de la función mitocondrial que precede a la disfunción cardíaca en la diabetes.


ABSTRACT Background: Previous results from our laboratory suggest that heart mitochondrial dysfunction precedes myocardial failure associated with sustained hyperglycemia. Purpose: The aim of this study was to analyze the early events that take place in heart mitochondria in a type 1 diabetes mellitus (DM) model. Methods: Male Wistar rats were injected with streptozotocin (STZ; 60 mg/kg, ip.) to induce DM. They were euthanized 10 or 14 days later and the heart mitochondrial fraction was obtained. Results: State 3 O2 consumption in the presence of malate-glutamate (21%) or succinate (16%), and complex I-III (27%), II-III (24%) and IV (22%) activities were lower in diabetic animals 14 days after STZ injection. When animals were euthanized at day 10, only state 3 O2 consumption sustained by complex I substrates (23%) and its corresponding respiratory control (30%) were lower in rats injected with STZ, in agreement with reduced complex I-III activity (17%). These changes were accompanied by increased H2O2 (117%), NO (30%) and ONOO- (~225%) production rates, mtNOS expression (29%) and O2 - (~150%) and NO (~30%) steady-state concentrations, together with a decrease in Mn-SOD activity (15%) and mitochondrial [GSSG+GSH] (28%), without changes in PGC-1α expression. Conclusion: Complex I dysfunction and increased H2O2, NO and ONOO- production rates can be considered subcellular prodromal signals of the mitochondrial damage that precedes myocardial dysfunction in diabetes.

3.
Free Radic Biol Med ; 162: 129-140, 2021 01.
Article in English | MEDLINE | ID: mdl-33278511

ABSTRACT

The aim of this work was to study the early events that occur in heart mitochondria and to analyse the temporal evolution of cardiac mitochondrial dysfunction in a type 1 diabetes model. Male Wistar rats were injected with Streptozotocin (STZ, single dose, 60 mg × kg-1, i.p.) and hyperglycemic state was confirmed 72 h later. The animals were sacrificed 10 or 14 days after STZ-injection. Heart mitochondrial state 3 O2 consumption sustained by malate-glutamate (21%) or by succinate (16%), and complexes I-III (27%), II-III (24%) and IV (22%) activities were lower in STZ group, when animals were sacrificed at day 14, i.e. ~11 days of hyperglycemia. In contrast, after 10 days of STZ-injection (~7 days of hyperglycemia), only the state 3 O2 consumption sustained by malate-glutamate (23%) and its corresponding respiratory control (30%) were lower in diabetic rats, in accordance with complex I-III activity reduction (17%). Therefore, this time (~7 days of hyperglycemia) has been considered as an "early stage" of cardiac mitochondrial dysfunction. At this point, mitochondrial production rates of H2O2 (117%), NO (30%) and ONOO- (~225%), and mtNOS expression (29%) were higher; and mitochondrial SOD activity (15%) and [GSH + GSSG] (28%) were lower in diabetic rats. Linear correlations between the modified mitochondrial parameters and glycemias were observed. PGC-1α expression was similar between groups, suggesting that mitochondrial biogenesis was not triggered in this initial phase of mitochondrial dysfunction. Consequently, complex I, H2O2 and NO could be considered early subcellular signals of cardiac mitochondrial dysfunction, with NO and H2O2 being located upstream de novo synthesis of mitochondria.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Animals , Diabetes Mellitus, Type 1/chemically induced , Hydrogen Peroxide , Male , Mitochondria, Heart , Rats , Rats, Wistar
4.
Food Funct ; 10(5): 2528-2537, 2019 May 22.
Article in English | MEDLINE | ID: mdl-30993288

ABSTRACT

In order to study the in vitro effect of flavan-3-ol (+)-catechin on the enzymatic activities of mitochondrial complex I and nitric oxide synthase (mtNOS), as well as the consequences on the membrane potential and H2O2 production rate, isolated mitochondria from rat heart were exposed to 3 nM to 100 µM (+)-catechin. NADH-Q1 reductase (complex I) and mtNOS activities were inhibited 25% and 50%, respectively, by the addition of 10 nM (+)-catechin to the reaction medium. Moreover, in the nM range, (+)-catechin decreased state 4 mitochondrial membrane potential by about 10 mV, but failed to change the membrane potential measured in the presence of ADP. (+)-Catechin (10 nM) inhibited not only complex I activity, but also the H2O2 production rate (35%) sustained by malate-glutamate, in accordance with the decrease observed in mitochondrial membrane potential. Considering (+)-catechin concentrations lower than 10 nM, linear and positive correlations were obtained between mitochondrial complex I activity and either NO (r2 = 0.973) or H2O2 production rates (r2 = 0.958), suggesting a functional association among these parameters. Altogether, the results indicate that (+)-catechin, at nM concentrations, inhibits mitochondrial complex I activity, leading to membrane potential decline and consequently to reduction in H2O2 and NO production rates. The decrease in mtNOS activity could also be a consequence of the direct action of (+)-catechin on the NOS structure, this effect being in accordance with the functional interaction between complex I and mtNOS, as previously reported.


Subject(s)
Catechin/pharmacology , Electron Transport Complex I/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Heart/drug effects , Hydrogen Peroxide/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Animals , Electron Transport Complex I/chemistry , Electron Transport Complex I/metabolism , Female , Kinetics , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Myocardium/chemistry , Myocardium/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase/chemistry , Nitric Oxide Synthase/metabolism , Rats , Rats, Sprague-Dawley
5.
Free Radic Biol Med ; 135: 274-282, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30862545

ABSTRACT

Mitochondrial dysfunction named complex I syndrome was observed in striatum mitochondria of rotenone treated rats (2 mg rotenone/kg, i. p., for 30 or 60 days) in an animal model of Parkinson disease. After 60 days of rotenone treatment, the animals showed: (a) 6-fold increased bradykinesia and 60% decreased locomotor activity; (b) 35-34% decreases in striatum O2 uptake and in state 3 mitochondrial respiration with malate-glutamate as substrate; (c) 43-57% diminished striatum complex I activity with 60-71% decreased striatum mitochondrial NOS activity, determined both as biochemical activity and as functional activity (by the NO inhibition of active respiration); (d) 34-40% increased rates of mitochondrial O2•- and H2O2 productions and 36-46% increased contents of the products of phospholipid peroxidation and of protein oxidation; and (e) 24% decreased striatum mitochondrial content, likely associated to decreased NO-dependent mitochondrial biogenesis. Intermediate values were observed after 30 days of rotenone treatment. Frontal cortex tissue and mitochondria showed similar but less marked changes. Rotenone-treated rats showed mitochondrial complex I syndrome associated with cellular oxidative stress in the dopaminergic brain areas of striatum and frontal cortex, a fact that describes the high sensitivity of mitochondrial complex I to inactivation by oxidative reactions.


Subject(s)
Electron Transport Complex I/metabolism , Mitochondria/metabolism , Oxygen/metabolism , Parkinson Disease/metabolism , Animals , Brain/drug effects , Brain/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Electron Transport Complex I/deficiency , Frontal Lobe/drug effects , Frontal Lobe/metabolism , Frontal Lobe/pathology , Gray Matter/drug effects , Gray Matter/metabolism , Humans , Hydrogen Peroxide/metabolism , Hypokinesia/chemically induced , Hypokinesia/metabolism , Hypokinesia/pathology , Lipid Peroxidation/drug effects , Locomotion/drug effects , Mitochondria/drug effects , Mitochondria/pathology , Oxidative Stress/drug effects , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Rats , Rotenone/pharmacology
6.
Free Radic Biol Med ; 112: 267-276, 2017 11.
Article in English | MEDLINE | ID: mdl-28756312

ABSTRACT

This study, in an experimental model of type I Diabetes Mellitus in rats, deals with the mitochondrial production rates and steady-state concentrations of H2O2 and NO, and ATP levels as part of a network of signaling molecules involved in heart mitochondrial biogenesis. Sustained hyperglycemia leads to a cardiac compromise against a work overload, in the absence of changes in resting cardiac performance and of heart hypertrophy. Diabetes was induced in male Wistar rats by a single dose of Streptozotocin (STZ, 60mg × kg-1, ip.). After 28 days of STZ-injection, rats were sacrificed and hearts were isolated. The mitochondrial mass (mg mitochondrial protein × g heart-1), determined through cytochrome oxidase activity ratio, was 47% higher in heart from diabetic than from control animals. Stereological analysis of cardiac tissue microphotographs showed an increase in the cytosolic volume occupied by mitochondria (30%) and in the number of mitochondria per unit area (52%), and a decrease in the mean area of each mitochondrion (23%) in diabetic respect to control rats. Additionally, an enhancement (76%) in PGC-1α expression was observed in cardiac tissue of diabetic animals. Moreover, heart mitochondrial H2O2 (127%) and NO (23%) productions and mtNOS expression (132%) were higher, while mitochondrial ATP production rate was lower (~ 40%), concomitantly with a partial-mitochondrial depolarization, in diabetic than in control rats. Changes in mitochondrial H2O2 and NO steady-state concentrations and an imbalance between cellular energy demand and mitochondrial energy transduction could be involved in the signaling pathways that lead to the novo synthesis of mitochondria. However, this compensatory mechanism triggered to restore the mitochondrial and tissue normal activities, did not lead to competent mitochondria capable of supplying the energetic demands in diabetic pathological conditions.


Subject(s)
Adenosine Triphosphate/metabolism , Diabetes Mellitus, Experimental/metabolism , Hydrogen Peroxide/metabolism , Mitochondria, Heart/metabolism , Myocardium/metabolism , Nitric Oxide/metabolism , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Gene Expression , Male , Membrane Potential, Mitochondrial/physiology , Mitochondria, Heart/pathology , Myocardium/pathology , Organelle Biogenesis , Organelle Size , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rats , Rats, Wistar , Streptozocin
7.
Int J Biochem Cell Biol ; 81(Pt B): 335-345, 2016 12.
Article in English | MEDLINE | ID: mdl-27682517

ABSTRACT

Diabetes is a chronic disease associated to a cardiac contractile dysfunction that is not attributable to underlying coronary artery disease or hypertension, and could be consequence of a progressive deterioration of mitochondrial function. We hypothesized that impaired mitochondrial function precedes Diabetic Cardiomyopathy. Thus, the aim of this work was to study the cardiac performance and heart mitochondrial function of diabetic rats, using an experimental model of type I Diabetes. Rats were sacrificed after 28days of Streptozotocin injection (STZ, 60mgkg-1, ip.). Heart O2 consumption was declined, mainly due to the impairment of mitochondrial O2 uptake. The mitochondrial dysfunction observed in diabetic animals included the reduction of state 3 respiration (22%), the decline of ADP/O ratio (∼15%) and the decrease of the respiratory complexes activities (22-26%). An enhancement in mitochondrial H2O2 (127%) and NO (23%) production rates and in tyrosine nitration (58%) were observed in heart of diabetic rats, with a decrease in Mn-SOD activity (∼50%). Moreover, a decrease in contractile response (38%), inotropic (37%) and lusitropic (58%) reserves were observed in diabetic rats only after a ß-adrenergic stimulus. Therefore, in conditions of sustained hyperglycemia, heart mitochondrial O2 consumption and oxidative phosphorylation efficiency are decreased, and H2O2 and NO productions are increased, leading to a cardiac compromise against a work overload. This mitochondrial impairment was detected in the absence of heart hypertrophy and of resting cardiac performance changes, suggesting that mitochondrial dysfunction could precede the onset of diabetic cardiac failure, being H2O2, NO and ATP the molecules probably involved in mitochondrion-cytosol signalling.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/physiopathology , Mitochondria, Heart/pathology , Adenosine Triphosphate/metabolism , Animals , Hydrogen Peroxide/metabolism , Nitric Oxide/metabolism , Rats
8.
Arch Biochem Biophys ; 607: 8-19, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27523732

ABSTRACT

Heart phosphorylating electron transfer particles (ETPH) produced NO at 1.2 ± 0.1 nmol NO. min(-1) mg protein(-1) by the mtNOS catalyzed reaction. These particles showed a NAD(+) reductase activity of 64 ± 3 nmol min(-1) mg protein(-1) sustained by reverse electron transfer (RET) at expenses of ATP and succinate. The same particles, without NADPH and in conditions of RET produced 0.97 ± 0.07 nmol NO. min(-1) mg protein(-1). Rotenone inhibited NO production supported by RET measured in ETPH and in coupled mitochondria, but did not reduce the activity of recombinant nNOS, indicating that the inhibitory effect of rotenone on NO production is due to an electron flow inhibition and not to a direct action on mtNOS structure. NO production sustained by RET corresponds to 20% of the total amount of NO released from heart coupled mitochondria. A mitochondrial fraction enriched in complex I produced 1.7 ± 0.2 nmol NO. min(-1) mg protein(-1) and reacted with anti-75 kDa complex I subunit and anti-nNOS antibodies, suggesting that complex I and mtNOS are located contiguously. These data show that mitochondrial NO production can be supported by RET, and suggest that mtNOS is next to complex I, reaffirming the idea of a functional association between these proteins.


Subject(s)
Mitochondria/metabolism , Nitric Oxide/metabolism , Adenosine Triphosphate/chemistry , Animals , Catalysis , Cattle , Dose-Response Relationship, Drug , Electrons , Mitochondria, Heart/metabolism , Myocardium/metabolism , NAD (+) and NADP (+) Dependent Alcohol Oxidoreductases/metabolism , NADP/chemistry , Oxygen Consumption , Rats , Recombinant Proteins/chemistry , Rotenone/chemistry , Submitochondrial Particles/chemistry , Succinic Acid/chemistry
9.
Antioxid Redox Signal ; 25(2): 78-88, 2016 07 10.
Article in English | MEDLINE | ID: mdl-27000416

ABSTRACT

AIM: We evaluated the effect of thioredoxin1 (Trx1) system on postischemic ventricular and mitochondrial dysfunction using transgenic mice overexpressing cardiac Trx1 and a dominant negative (DN-Trx1) mutant (C32S/C35S) of Trx1. Langendorff-perfused hearts were subjected to 15 min of ischemia followed by 30 min of reperfusion (R). We measured left ventricular developed pressure (LVDP, mmHg), left ventricular end diastolic pressure (LVEDP, mmHg), and t63 (relaxation index, msec). Mitochondrial respiration, SERCA2a, phospholamban (PLB), and phospholamban phosphorylation (p-PLB) Thr17 expression (Western blot) were also evaluated. RESULTS: At 30 min of reperfusion, Trx1 improved contractile state (LVDP: Trx1: 57.4 ± 4.9 vs. Wt: 27.1 ± 6.3 and DN-Trx1: 29.2 ± 7.1, p < 0.05); decreased myocardial stiffness (LVEDP: Wt: 24.5 ± 4.8 vs. Trx1: 11.8 ± 2.9, p < 0.05); and improved the isovolumic relaxation (t63: Wt: 63.3 ± 3.2 vs. Trx1: 51.4 ± 1.9, p < 0.05). DN-Trx1 mice aggravated the myocardial stiffness and isovolumic relaxation. Only the expression of p-PLB Thr17 increased at 1.5 min R in Wt and DN-Trx1 groups. At 30 min of reperfusion, state 3 mitochondrial O2 consumption was impaired by 13% in Wt and by 33% in DN-Trx1. ADP/O ratios for Wt and DN-Trx1 decrease by 25% and 28%, respectively; whereas the Trx1 does not change after ischemia and reperfusion (I/R). Interestingly, baseline values of complex I activity were increased in Trx1 mice; they were 24% and 47% higher than in Wt and DN-Trx1 mice, respectively (p < 0.01). INNOVATION AND CONCLUSION: These results strongly suggest that Trx1 ameliorates the myocardial effects of I/R by improving the free radical-mediated damage in cardiac and mitochondrial function, opening the possibility of new therapeutic strategies in coronary artery disease. Antioxid. Redox Signal. 25, 78-88.


Subject(s)
Mitochondria, Heart/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Myocardial Stunning/metabolism , Thioredoxins/metabolism , Ventricular Dysfunction/metabolism , Animals , Electron Transport Chain Complex Proteins/metabolism , Hydrogen Peroxide/metabolism , Male , Mice , Myocardial Contraction , Myocardial Reperfusion Injury/genetics , Myocardial Stunning/genetics , Oxygen Consumption , Thioredoxins/genetics , Ventricular Dysfunction/genetics
10.
Free Radic Biol Med ; 89: 602-13, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26456055

ABSTRACT

The effect of NO between cytochromes b and c of the mitochondrial respiratory chain were studied using submitochondrial particles (SMP) from bovine heart and GSNO and SPER-NO as NO sources. Succinate-cytochrome c reductase (complex II-III) activity (222 ± 4 nmol/min. mg protein) was inhibited by 51% in the presence of 500 µM GSNO and by 48% in the presence of 30 µM SPER-NO, in both cases at ~1.25 µM NO. Neither GSNO nor SPER-NO were able to inhibit succinate-Q reductase activity (complex II; 220 ± 9 nmol/min. mg protein), showing that NO affects complex III. Complex II-III activity was decreased (36%) when SMP were incubated with l-arginine and mtNOS cofactors, indicating that this effect is also produced by endogenous NO. GSNO (500 µM) reduced cytochrome b562 by 71%, in an [O2] independent manner. Hyperbolic increases in O2(•-) (up to 1.3 ± 0.1 nmol/min. mg protein) and H2O2 (up to 0.64 ± 0.05 nmol/min. mg protein) productions were observed with a maximal effect at 500 µM GSNO. The O2(•-)/H2O2 ratio was 1.98 in accordance with the stoichiometry of the O2(•-) disproportionation. Moreover, H2O2 production was increased by 72-74% when heart coupled mitochondria were exposed to 500 µM GSNO or 30 µM SPER-NO. SMP incubated in the presence of succinate showed an EPR signal (g=1.99) compatible with a stable semiquinone. This EPR signal was increased not only by antimycin but also by GSNO and SPER-NO. These signals were not modified under N2 atmosphere, indicating that they are not a consequence to the effect of NOx species on complex III area. These results show that NO interacts with ubiquinone-cytochrome b area producing antimycin-like effects. This behaviour comprises the inhibition of electron transfer, the interruption of the oxidation of cytochromes b, and the enhancement of [UQH(•)]ss which, in turn, leads to an increase in O2(•-) and H2O2 mitochondrial production rates.


Subject(s)
Electron Transport Complex III/metabolism , Mitochondria, Heart/metabolism , Nitric Oxide/metabolism , Submitochondrial Particles/metabolism , Animals , Antimycin A/analogs & derivatives , Antimycin A/metabolism , Cattle , Electron Spin Resonance Spectroscopy , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Rats
11.
Vitam Horm ; 96: 29-58, 2014.
Article in English | MEDLINE | ID: mdl-25189383

ABSTRACT

Heart mitochondria play a central role in cell energy provision and in signaling. Nitric oxide (NO) is a free radical which exerts an integral regulation of the cardiovascular system not only by adapting vascular smooth muscle tone but also by influencing ion channel function, myocyte contraction, energy metabolism, and hypertrophic myocardial remodeling. This chapter analyzes the available data about heart mitochondrial NOS (mtNOS) activity and identity. The regulation of heart mtNOS by the distinctive mitochondrial environment is described by showing the effects of Ca(2+), O2, L-arginine, NADPH, mitochondrial membrane potential (ΔΨ) and the metabolic states. Evidence about the regulation of heart mtNOS in chronic hypoxia and ischemia-reperfusion models is presented. Functional implications of heart mitochondrial NOS are delineated with emphasis on the chemical reactions through which NO interacts with mitochondrial targets and exerts some of its crucial roles.


Subject(s)
Mitochondria, Heart/enzymology , Nitric Oxide Synthase/metabolism , Animals , Energy Metabolism , Humans
12.
J Bioenerg Biomembr ; 44(2): 243-52, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22426814

ABSTRACT

Acute endotoxemia (LPS, 10 mg/kg ip, Sprague Dawley rats, 45 days old, 180 g) decreased the O2 consumption of rat heart (1 mm³ tissue cubes) by 33% (from 4.69 to 3.11 µmol O2/min. g tissue). Mitochondrial O2 consumption and complex I activity were also decreased by 27% and 29%, respectively. Impaired respiration was associated to decreased ATP synthesis (from 417 to 168 nmol/min. mg protein) and ATP content (from 5.40 to 4.18 nmol ATP/mg protein), without affecting mitochondrial membrane potential. This scenario is accompanied by an increased production of O2·â» and H2O2 due to complex I inhibition. The increased NO production, as shown by 38% increased mtNOS biochemical activity and 31% increased mtNOS functional activity, is expected to fuel an increased ONOO⁻ generation that is considered relevant in terms of the biochemical mechanism. Heart mitochondrial bioenergetic dysfunction with decreased O2 uptake, ATP production and contents may indicate that preservation of mitochondrial function will prevent heart failure in endotoxemia.


Subject(s)
Adenosine Triphosphate/biosynthesis , Electron Transport Complex I/metabolism , Endotoxemia/metabolism , Membrane Potential, Mitochondrial , Mitochondria, Heart/metabolism , Oxygen Consumption , Animals , Electron Transport , Endotoxemia/complications , Endotoxemia/pathology , Female , Heart Failure/etiology , Heart Failure/metabolism , Heart Failure/pathology , Hydrogen Peroxide/metabolism , Mitochondria, Heart/pathology , Nitric Oxide/metabolism , Rats , Rats, Sprague-Dawley
13.
Mol Cell Biochem ; 359(1-2): 169-76, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21842376

ABSTRACT

Hemorrhage (H) is associated with a left ventricular (LV) dysfunction. However, the diastolic function has not been studied in detail. The main goal was to assess the diastolic function both during and 120 min after bleeding, in the absence and in the presence of L-NAME. Also, the changes in mRNA and protein expression of nitric oxide synthase (NOS) isoforms were determined. New Zealand rabbits were divided into three groups: Sham group, H group (hemorrhage 20% blood volume), and H L-NAME group (hemorrhage treated with L-NAME). We evaluated systolic and diastolic ventricular functions in vivo and in vitro (Langendorff technique). Hemodynamic parameters and LV function were measured before, during, and at 120 min after bleeding. We analyzed the isovolumic relaxation using t ½ in vivo (closed chest). After that, hearts were excised and perfused in vitro to measure myocardial stiffness. Samples were frozen to measure NOS mRNA and protein expression. The t½ increased during bleeding and returned to basal values 120 min after bleeding. L-NAME blunted this effect. Data from the H group revealed a shift to the left in the LV end diastolic pressure-volume curve at 120 min after bleeding, which was blocked by L-NAME. iNOS and nNOS protein expression and mRNA levels increased at 120 min after the hemorrhage. Acute hemorrhage induces early and transient isovolumic relaxation impairment and an increase in myocardial stiffness 120 min after bleeding. L-NAME blunted the LV dysfunction, suggesting that NO modulates ventricular function through iNOS and nNOS isoforms.


Subject(s)
Diastole , Shock, Hemorrhagic/physiopathology , Ventricular Dysfunction, Left/drug therapy , Animals , Diastole/drug effects , Diastole/physiology , Heart/physiopathology , Hemorrhage , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase Type I , Nitric Oxide Synthase Type II , Nitrogen Oxides , Rabbits , Shock, Hemorrhagic/complications , Ventricular Dysfunction, Left/enzymology , Ventricular Dysfunction, Left/etiology
14.
Free Radic Biol Med ; 51(6): 1203-12, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21723387

ABSTRACT

Isolated rabbit hearts were exposed to ischemia (I; 15 min) and reperfusion (R; 5-30 min) in a model of stunned myocardium. I/R decreased left-ventricle O(2) consumption (46%) and malate-glutamate-supported mitochondrial state 3 respiration (32%). Activity of complex I was 28% lower after I/R. The pattern observed for the decline in complex I activity was also observed for the reduction in mitochondrial nitric oxide synthase (mtNOS) biochemical (28%) and functional (50%) activities, in accordance with the reported physical and functional interactions between complex I and mtNOS. Malate-glutamate-supported state 4 H(2)O(2) production was increased by 78% after I/R. Rabbit heart Mn-SOD concentration in the mitochondrial matrix (7.4±0.7 µM) was not modified by I/R. Mitochondrial phospholipid oxidation products were increased by 42%, whereas protein oxidation was only slightly increased. I/R produced a marked (70%) enhancement in tyrosine nitration of the mitochondrial proteins. Adenosine attenuated postischemic ventricular dysfunction and protected the heart from the declines in O(2) consumption and in complex I and mtNOS activities and from the enhancement of mitochondrial phospholipid oxidation. Rabbit myocardial stunning is associated with a condition of dysfunctional mitochondria named "complex I syndrome." The beneficial effect of adenosine could be attributed to a better regulation of intracellular cardiomyocyte Ca(2+) concentration.


Subject(s)
Adenosine/administration & dosage , Electron Transport Complex I/metabolism , Mitochondria, Heart/metabolism , Myocardial Stunning/metabolism , Reperfusion Injury/metabolism , Animals , Cell Respiration/drug effects , Disease Models, Animal , Heart Ventricles/pathology , Lipid Peroxidation , Mitochondria, Heart/drug effects , Mitochondria, Heart/pathology , Myocardial Stunning/drug therapy , Myocardial Stunning/pathology , Nitric Oxide Synthase/metabolism , Oxygen Consumption/drug effects , Rabbits , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Superoxide Dismutase/metabolism
15.
Exp Physiol ; 95(2): 274-81, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19880538

ABSTRACT

The activation of matrix metalloproteinases (MMPs) contributes to myocardial injury at the onset of reperfusion; however, their role in ischaemic postconditioning is unknown. The aim of the present study was to examine the effects of ischaemic postconditioning on MMP activity in isolated rabbit hearts. The isolated rabbit hearts were subjected to 30 min of global ischaemia followed by 180 min of reperfusion (I/R group; n = 8). In the ischaemic postconditioning group (n = 8), a postconditioning protocol was performed (2 cycles of 30 s reperfusion-ischaemia). In other experiments, we added doxycycline, an MMP inhibitor, at 25 (n = 7) or 50 micromol l(1) (n = 8) during the first 2 min of reperfusion. Coronary effluent and left ventricular tissue were collected during pre-ischaemic conditions and at different times during the reperfusion period to measure MMP-2 activity and cardiac protein nitration. We evaluated ventricular function and infarct size. In the I/R group, infarct size was 32.1 +/- 5.2%; Postcon reduced infarct size to 9.5 +/- 3.8% (P < 0.05) and inhibited MMP-2 activity during reperfusion. The administration of doxycycline at 50 micromol l(1) inhibited MMP-2 activity and cardiac protein nitration and reduced the infarct size to 9.7 +/- 2.8% (P < 0.05). A lower dose of doxycycline (25 micromol l(1)) failed to inhibit MMP-2 activity and did not modify the infarct size. Our results strongly suggest that ischaemic postconditioning may exert part of its cardioprotective effects through the inhibition of MMP-2 activity.


Subject(s)
Heart Ventricles/physiopathology , Matrix Metalloproteinase 2/metabolism , Myocardial Reperfusion Injury/physiopathology , Ventricular Dysfunction, Left/physiopathology , Animals , Coronary Circulation , Enzyme Activation , Myocardial Reperfusion Injury/complications , Rabbits , Ventricular Dysfunction, Left/etiology
16.
Rev. argent. cardiol ; 77(3): 181-186, mayo-jun. 2009. graf, tab
Article in Spanish | LILACS | ID: lil-634081

ABSTRACT

Antecedentes En un trabajo previo mostramos que el estado hipovolémico inducido por una pérdida aguda de sangre se acompaña de una activación dinámica, heterogénea y dependiente del tiempo de la óxido nítrico sintetasa (NOS) cardíaca. Este sistema estaría involucrado en las alteraciones hemodinámicas que se observan luego de la depleción de volumen sanguíneo. Objetivo El objetivo del presente trabajo fue evaluar la participación del sistema del óxido nítrico (NO) mitocondrial en la respuesta adaptativa del sistema cardiovascular ante un shock hipovolémico en ratas anestesiadas y no anestesiadas. Material y métodos El estudio se llevó a cabo con cuatro grupos de animales (n = 7 por grupo): grupo A, ratas control anestesiadas; grupo C, ratas control no anestesiadas; grupo AH, ratas anestesiadas sometidas a una hemorragia (20% de la volemia) y grupo CH, ratas no anestesiadas sometidas a una hemorragia. Se evaluaron el consumo de oxígeno, la actividad funcional de la NOS mitocondrial (mtNOS) y la producción mitocondrial de NO. Resultados No se observaron diferencias significativas entre los valores de control respiratorio en los distintos grupos estudiados. La actividad funcional de la mtNOS fue menor en el grupo AH respecto del grupo A (12 ± 2 y 19 ± 1, respectivamente). Este efecto fue de menor magnitud cuando la hemorragia se provocó en animales no anestesiados (17 ± 1 y 20 ± 1, respectivamente). La producción mitocondrial de NO disminuyó en los grupos sometidos a una pérdida aguda de sangre, tanto no anestesiados como anestesiados, respecto de los animales controles. Conclusiones El sistema del NO mitocondrial estaría involucrado en la respuesta de adaptación del sistema cardiovascular frente a la depleción aguda de volumen. Esta participación dependería del grado de anestesia del animal.


Background We have previously demonstrated that hypovolemia induced by acute bleeding is accompanied by a dynamic, heterogenous and time-dependent activation of the cardiac nitric oxide synthase (NOS). This system might be involved in the hemodynamic anomalies observed after blood volume depletion. Objective To assess the role of the mitochondrial nitric oxide (NO) system in the adaptive response of the cardiovascular system in anesthetized and non anesthetized rats under hypovolemic shock. Material and Methods Animals were divided in four groups (n=7 animals per group): Group A, anesthetized control rats; group C, non anesthetized control rats; group AB, anesthetized rats subjected to bleeding (20% of blood volume), and group CB, non anesthetized rats subjected to bleeding. Oxygen consumption, functional activity of mitochondrial NOS (mtNOS) and mitochondrial production of NO were assessed. Results There were no significant differences in the values of respiratory parameters among the different study groups. Group AB had less functional activity of mtNOS compared to group A (12±2 and 19±1, respectively). This effect was even lower in non anesthetized animals subjected to bleeding (17±1 and 20±1, respectively). Mitochondrial production of NO decreased in anesthetized and non anesthetized animals with acute bleeding compared to controls. Conclusions Mitochondrial NO system might be involved in the adaptive response of the cardiovascular system under acute volume depletion, depending on the animal's degree of anesthesia.

17.
Am J Physiol Heart Circ Physiol ; 296(6): H1741-7, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19346458

ABSTRACT

Rats submitted to high altitude (Cerro de Pasco, Perú, 4,340 m, Po(2) = 12.2 kPa) for up to 84 days showed a physiological adaptive response with decreased body weight gain (15%), increased right ventricle weight (100%), and increased hematocrit (40%) compared with sea level animals. These classical parameters of adaptation to high altitude were accompanied by an increase in heart mitochondrial enzymes: complexes I-III activity by 34% and mitochondrial nitric oxide synthase (mtNOS) activity and expression by >75%. The hyperbolic increase for mtNOS activity during adaptation to high altitude was similar to the observed pattern for hematocrit. Hematocrit and mtNOS activity mean values correlated linearly (r(2) = 0.75, P

Subject(s)
Adaptation, Physiological/drug effects , Altitude , Arginine/pharmacology , Heart/physiology , NG-Nitroarginine Methyl Ester/pharmacology , Piperazines/pharmacology , Sulfones/pharmacology , Adaptation, Physiological/physiology , Animals , Body Weight , Electron Transport Complex I/metabolism , Electron Transport Complex II/metabolism , Electron Transport Complex III/metabolism , Electron Transport Complex IV/metabolism , Enzyme Inhibitors/pharmacology , Hematocrit , Hypertrophy, Right Ventricular/drug therapy , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/physiopathology , Male , Mitochondria/enzymology , Myocardium/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Organ Size , Phosphodiesterase Inhibitors/pharmacology , Purines/pharmacology , Rats , Rats, Sprague-Dawley , Sildenafil Citrate
18.
Front Biosci ; 12: 1210-9, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17127374

ABSTRACT

The mitochondrial metabolic state regulates the rate of mitochondrial NO production and release to the cytosol. Nitric oxide release of rat heart mitochondria decreased markedly from 2.2 to 1.2 nmol NO/min. mg protein in the state 4 to state 3 transition. The activity of mtNOS, responsible for NO release, is driven by the membrane potential and not by intramitochondrial pH changes. The release of NO by rat liver mitochondria showed an exponential dependence on membrane potential. A similar behavior was reported for heart mitochondrial H2O2 production. The fraction of heart cytosolic NO provided by diffusion from mitochondria is 90%. The intramitochondrial concentrations of L-arginine and NADPH are higher than their KM values, and the changes in their concentrations in the state 4-state 3 transition are not enough to explain the changes in NO release. These data indicate that the redox state of the respiratory chain components regulates H2O2 production and mitochondrial membrane potential modulates NO release, and support the speculation that NO and H2O2 are a biological signal that reports a high mitochondrial energy charge to the cytosol. The marked regulation of mtNOS activity, as a voltage-dependent enzyme and at the physiological range of membrane potentials, makes mtNOS a highly sensitive enzyme that in turn regulates mitochondrial O2 uptake and H2O2 production.


Subject(s)
Mitochondria/enzymology , Nitric Oxide Synthase/metabolism , Nitric Oxide/biosynthesis , Animals , Cytosol/chemistry , Diffusion , Hydrogen Peroxide/metabolism , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Mitochondria, Heart/enzymology , Nitric Oxide/chemistry , Rats
19.
Front Biosci ; 12: 1247-59, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17127451

ABSTRACT

A remarkable number of adaptive responses; including changes in the cardiovascular, respiratory and hematologic systems; takes place during acclimatization to natural or simulated high altitude. This adaptation to chronic hypoxia confers the heart an improved tolerance to all major deleterious consequences of acute O2 deprivation, not only reducing infarct size but also alleviating post-ischemic contractile dysfunction and ventricular arrhythmias. There is growing evidence about the involvement of mitochondria and NO in the establishment of cardioprotection. This review focuses on evidence about the putative role of different effectors of heart acclimatization to chronic hypoxia. Along with classical parameters, we consider NO, specially that generated by mtNOS, mitochondrial respiratory chain, mitoK(ATP) channels, reactive oxygen species and control of gene expression by HIF-1.


Subject(s)
Acclimatization , Hypoxia/metabolism , Mitochondria, Heart/metabolism , Nitric Oxide/physiology , Animals , Humans , Hypoxia-Inducible Factor 1/physiology , Mice , Potassium Channels/physiology , Rats
20.
Biochim Biophys Acta ; 1757(3): 166-72, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16624252

ABSTRACT

The mitochondrial metabolic state regulates the rate of NO release from coupled mitochondria: NO release by heart, liver and kidney mitochondria was about 40-45% lower in state 3 (1.2, 0.7 and 0.4 nmol/min mg protein) than in state 4 (2.2, 1.3 and 0.7 nmol/min mg protein). The activity of mtNOS, responsible for NO release, appears driven by the membrane potential component and not by intramitochondrial pH of the proton motive force. The intramitochondrial concentrations of the NOS substrates, L-arginine (about 310 microM) and NADPH (1.04-1.78 mM) are 60-1000 times higher than their KM values. Moreover, the changes in their concentrations in the state 4-state 3 transition are not enough to explain the changes in NO release. Nitric oxide release was exponentially dependent on membrane potential as reported for mitochondrial H2O2 production [S.S. Korshunov, V.P. Skulachev, A.A. Satarkov, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416 (1997) 15-18.]. Agents that decrease or abolish membrane potential minimize NO release while the addition of oligomycin that produces mitochondrial hyperpolarization generates the maximal NO release. The regulation of mtNOS activity, an apparently voltage-dependent enzyme, by membrane potential is marked at the physiological range of membrane potentials.


Subject(s)
Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Nitric Oxide Synthase/metabolism , Animals , Female , Hydrogen-Ion Concentration , Membrane Potentials , Mitochondria/enzymology , Nitric Oxide/metabolism , Oxidation-Reduction , Oxygen/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...