Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Math Biosci ; 346: 108664, 2022 04.
Article in English | MEDLINE | ID: mdl-34271015

ABSTRACT

The COVID-19 pandemic has challenged authorities at different levels of government administration around the globe. When faced with diseases of this severity, it is useful for the authorities to have prediction tools to estimate in advance the impact on the health system as well as the human, material, and economic resources that will be necessary. In this paper, we construct an extended Susceptible-Exposed-Infected-Recovered model that incorporates the social structure of Mar del Plata, the 4°most inhabited city in Argentina and head of the Municipality of General Pueyrredón. Moreover, we consider detailed partitions of infected individuals according to the illness severity, as well as data of local health resources, to bring predictions closer to the local reality. Tuning the corresponding epidemic parameters for COVID-19, we study an alternating quarantine strategy: a part of the population can circulate without restrictions at any time, while the rest is equally divided into two groups and goes on successive periods of normal activity and lockdown, each one with a duration of τ days. We also implement a random testing strategy with a threshold over the population. We found that τ=7 is a good choice for the quarantine strategy since it reduces the infected population and, conveniently, it suits a weekly schedule. Focusing on the health system, projecting from the situation as of September 30, we foresee a difficulty to avoid saturation of the available ICU, given the extremely low levels of mobility that would be required. In the worst case, our model estimates that four thousand deaths would occur, of which 30% could be avoided with proper medical attention. Nonetheless, we found that aggressive testing would allow an increase in the percentage of people that can circulate without restrictions, and the medical facilities to deal with the additional critical patients would be relatively low.


Subject(s)
COVID-19 , Argentina/epidemiology , COVID-19/prevention & control , Communicable Disease Control , Humans , Pandemics/prevention & control , Quarantine , SARS-CoV-2
2.
Phys Rev E ; 102(3-1): 032308, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33075958

ABSTRACT

Power-law behaviors are common in many disciplines, especially in network science. Real-world networks, like disease spreading among people, are more likely to be interconnected communities, and show richer power-law behaviors than isolated networks. In this paper, we look at the system of two communities which are connected by bridge links between a fraction r of bridge nodes, and study the effect of bridge nodes to the final state of the Susceptible-Infected-Recovered model by mapping it to link percolation. By keeping a fixed average connectivity, but allowing different transmissibilities along internal and bridge links, we theoretically derive different power-law asymptotic behaviors of the total fraction of the recovered R in the final state as r goes to zero, for different combinations of internal and bridge link transmissibilities. We also find crossover points where R follows different power-law behaviors with r on both sides when the internal transmissibility is below but close to its critical value for different bridge link transmissibilities. All of these power-law behaviors can be explained through different mechanisms of how finite clusters in each community are connected into the giant component of the whole system, and enable us to pick effective epidemic strategies and to better predict their impacts.

3.
Phys Rev E ; 101(5-1): 052309, 2020 May.
Article in English | MEDLINE | ID: mdl-32575220

ABSTRACT

Ring vaccination is a mitigation strategy that consists in seeking and vaccinating the contacts of a sick patient, in order to provide immunization and halt the spread of disease. We study an extension of the susceptible-infected-recovered (SIR) epidemic model with ring vaccination in complex and spatial networks. Previously, a correspondence between this model and a link percolation process has been established, however, this is only valid in complex networks. Here, we propose that the SIR model with ring vaccination is equivalent to a mixed percolation process of links and nodes, which offers a more complete description of the process. We verify that this approach is valid in both complex and spatial networks, the latter being built according to the Waxman model. This model establishes a distance-dependent cost of connection between individuals arranged in a square lattice. We determine the epidemic-free regions in a phase diagram based on the wiring cost and the parameters of the epidemic model (vaccination and infection probabilities and recovery time). In addition, we find that for long recovery times this model maps into a pure node percolation process, in contrast to the SIR model without ring vaccination, which maps into link percolation.


Subject(s)
Vaccination/methods , Communicable Diseases/epidemiology , Disease Susceptibility/epidemiology , Humans , Models, Statistical
4.
Phys Rev E ; 101(3-1): 032309, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32289896

ABSTRACT

In the past few decades, the frequency of pandemics has been increased due to the growth of urbanization and mobility among countries. Since a disease spreading in one country could become a pandemic with a potential worldwide humanitarian and economic impact, it is important to develop models to estimate the probability of a worldwide pandemic. In this paper, we propose a model of disease spreading in a structural modular complex network (having communities) and study how the number of bridge nodes n that connect communities affects disease spread. We find that our model can be described at a global scale as an infectious transmission process between communities with global infectious and recovery time distributions that depend on the internal structure of each community and n. We find that near the critical point as n increases, the disease reaches most of the communities, but each community has only a small fraction of recovered nodes. In addition, we obtain that in the limit n→∞, the probability of a pandemic increases abruptly at the critical point. This scenario could make the decision on whether to launch a pandemic alert or not more difficult. Finally, we show that link percolation theory can be used at a global scale to estimate the probability of a pandemic since the global transmissibility between communities has a weak dependence on the global recovery time.


Subject(s)
Models, Theoretical , Pandemics , Disease Susceptibility
5.
Phys Rev E ; 99(2-1): 022311, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30934313

ABSTRACT

K-core and bootstrap percolation are widely studied models that have been used to represent and understand diverse deactivation and activation processes in natural and social systems. Since these models are considerably similar, it has been suggested in recent years that they could be complementary. In this manuscript we provide a rigorous analysis that shows that for any degree and threshold distributions heterogeneous bootstrap percolation can be mapped into heterogeneous k-core percolation and vice versa, if the functionality thresholds in both processes satisfy a complementary relation. Another interesting problem in bootstrap and k-core percolation is the fraction of nodes belonging to their giant connected components P_{∞b} and P_{∞c}, respectively. We solve this problem analytically for arbitrary randomly connected graphs and arbitrary threshold distributions, and we show that P_{∞b} and P_{∞c} are not complementary. Our theoretical results coincide with computer simulations in the limit of very large graphs. In bootstrap percolation, we show that when using the branching theory to compute the size of the giant component, we must consider two different types of links, which are related to distinct spanning branches of active nodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...